Using class-based Arduino libraries Iin
XOD

Overview
New device

Find Arduino library for device

Test the Arduino library
Install Arduino IDE
Add library to IDE
Run an example sketch

Inspect the Arduino library

Dependencies
Class declaration

Start a new XOD project

Create a new device

Insert nodes
Open C++ code editor
Document the device

Action nodes
Function to be wrapped
Add a new patch
Default values for inputs
C++ code

Quickstart node

Example patches

Testing
Upload example patch to Arduino
Install dependencies
Debugging
Check output

Sharing libraries

Set metadata
Publish

Updates
Summary

Resources

XOD documentation
XOD forum

Existing XOD libraries
Arduino libraries

Overview

Arduino libraries exist for a huge range of breakout boards and other devices (see
https://www.arduinolibraries.info/). If you have a little C++ experience, it is easy to
incorporate these libraries into XOD.

In this tutorial we will create a XOD library for the TSL2591 high dynamic range digital light
sensor. Adafruit produce a breakout board for this sensor:
https://learn.adafruit.com/adafruit-ts|2591/

\ TSL2591 7

Lux Sensor\

001_tls2591-breakout.png

New device

When presented with a new device the first thing you should do is check if it is already
supported in XOD. Fortunately there is a searchable database of core and contributed
libraries:

https://xod.io/libs/

If you search for “light sensor” or “TSL2591” you will find that a library already exists for this
device (https://xod.io/libs/wayland/tsl2591-light-sensor/). However, for the purposes of this
tutorial, we will pretend that there is no library for the TSL2591.

https://xod.io/libs/

Find Arduino library for device

If you cannot find a XOD library for your device, you will need to look for a class-based
Arduino library. Manufacturers of breakout boards typically provide C++ libraries for their
devices. On the product pages of companies such as Adafruit, Polulu and Sparkfun you will
typically find links to code repositories. For more unusual devices a web search will often
find libraries developed by hobbyists.

Adafruit’s code repository for their TSL2591 library is on github:
https://github.com/adafruit/Adafruit TSL2591 Library

[adafruit / Adafruit_TSL2591_Library @ Watch ~ 27 {rStar 38 % Fork 32

<> Code 1) Issues 6 il Pull requests 5) Actions "] Projects | Security |~ Insights

¥ master ~ Go to file Add file ~ About

This is an Arduino library for
e siddacious Update library.properties .- v on29Feb 70 the TSL2591 digital
luminosity (light) sensors.

.github actions and remove some unused(?) headers 8 months ago
arduino library
examples https://github.com//issues/11 3 years ago arisine iy e
™ Adafruit_TSL2591.cpp clang 8 months ago light lux infrared
isibl
[y Adafruit TSL2591.h clang 8 months ago it
[README.md Update README.md 9 months ago 0 Readme
) library.properties Update library.properties 8 months ago
Releases 9
README.md > 1.2.1 Move to acti... 'J:Lalesl:]
on 29 Feb
- .
Adafruit TSL2591 Library £z + 8 releases
Lo
Packages

This is an Arduino library for the TSL2591 digital luminosity (light) sensors. i pekcag Gilihen

Pick one up at http://www.adafruit.com/products/1980

You'll also need the Adafruit_Sensor library from Contributors 1
https://github.com/adafruit/Adafruit_Sensor Ui e i

002_adafruit_tls2591 library.png

Test the Arduino library

Once you've found a library for your device it is a good idea to test it using the Arduino IDE.
Well written libraries will include example sketches. Reading through the sketches can help
you to understand how the methods in the library are used.

Install Arduino IDE

Download and install Arduino IDE on your computer:
https://www.arduino.cc/en/Main/Software

Add library to IDE

From the Tools menu select Manage Libraries...
8 Arduino File Edit Sketch Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload

Manage Libraries... 31
Serial Monitor THM
Serial Plotter L

WIiFi101 / WiFININA Firmware Updater

Board: "Arduino Uno"
Port
Get Board Info

Programmer
Burn Bootloader

003_Arduino-IDE-manage-install-lib.png

In the Library Manager search for tsl2591. Select the most recent version of the Adafruit
TSL2591 Library and click Install.

[JoN Library Manager
Type Al B Topic Al 512591
Adafruit TSL2591 Library
by Adafruit
Library for the TSL2591 digital luminesity (light) s. Library for the TSL2591 digital luminosity (light) sensors.
More info

Version 1.2.1 Install

004_Arduino-IDE-manage-install-lib.png

You will receive the following prompt informing you that the Adafruit TSL2591 Library:1.2.1
is dependent on another library, the Adafruit Unified Sensor. Click Install all.

& Dependencies for library Adafruit TSL2591 Library:1.2.1

The library Adafruit TSL2591 Library:1.2.1 needs some other library
dependencies currently not installed:

- Adafruit Unified Sensor
Would you like to install also all the missing dependencies?

Install all Install "Adafruit TSL2591 Library' only Cancel

005_Adafruit_Unified_Sensor_prompt.png

Run an example sketch

Running an example sketch is a good way of checking that:
e The device is wired correctly to the Arduino board.
e The device is working.
e The library is working.

Open an example sketch:

File — Examples — Adafruit TSL2591 — tsl2591

Arduino | File Edit Sketch Tools Help

New #N

Open... #0

Open Recent >

Sketchbook

Examples > I 1 Examp
Close #W 01.Basics

Save #S 02.Digital

Save As... 38 03.Analog
04.Communication
05.Control
06.Sensors
07.Display
08.Strings

09.USB
10.StarterKit_BasicKit
11.ArduinolISP

Page Setup T+¥P
Print #P

Y Y Y VY VY VYYVYyYYY

Adafruit Circuit Playground
Bridge

Esplora
Ethernet
Firmata

GSM
LiquidCrystal
Robot Control
Robot Motor
SD

Servo
SpacebrewYun
Stepper
Temboo
RETIRED

Y VYV Y Y Y Y Y Y YYYYYYY

EEPROM
SoftwareSerial
SPI

Wire

Adafruit TSL2591 Library tsl2591

Adafruit Unified Sensor tsl2591_interrupt
Blynk

DallasTemperature

OneWire

006_open_example_sketch.png

This example sketch will transmit data via serial. Click on the Upload button.

[NON | 512591 | Arduino 1.8.13

512591

1} T5L2591 Dig Light ¢
3lre M aum Lu -

4

5 #include <Wire.h-

£ #include <Adafruit_Sensor.hs

#include “Adafruit_T5L2591.h"

[= 1]

9 // Example for demonstrating the T5L2591 Llibrary - public domain!

18

11 /¥ connect SCL to I2C Clock

12 // connect SDA to IZ2C Data

13 /¥ connect ¥Win to 3.3-5V DC

14 // connect GROUND to common ground

15

16 Adafruit_TSLZ591 ts1 = Adafruit_TSLZ591(2591); // pass in a number f

17

Arduing Uno on [dev/cu.usbmodem14201

008 _tsl2591_sketch.png

Once the program is running on the Arduino, you can open the serial monitor:

Tools — Serial Monitor

The example sketch transmits serial at 9600 baud, so make sure this speed is selected in
the serial monitor. If everything is working data will be printed to the serial monitor.

0@ fdev/cu.usbmodem 14201

Send

17:55:42.971 -» Starting Adofruit TSL2591 Test!
17:55:43.@85 -> Found a T5LZ2591 sensor
17:55:43.843 -»
17:55:43.876 -> Sensor: T5L2591
17:55:43.118 -» Driver Ver: 1
17:55:43.118 -> Unique ID: 2591
17:55:43.143 -> Max Value: 32008.00 lux
17:55:43.177 -> Min Value: 2.08 lux
17:55:43.177 -> Resolution: @.0910 lux
17:55:43.211 -»
17:55:43.249 -»
17:55:43.682 -»
17:55:43.749 -> Gain: 25% (Medium)
17:55:43.749 -> Timing: 388 ms
17:55:43.786 -»
17:55:43.821 -»
17:55:44.131 -> [1145 ms] IR: 65535 Full: 65535 Visible: @ Lux: -1.908008
17:55:44 993 -» [2889 ms] IR: 65535 Full: 65535 Visible: @ Lux: -1.000000

| Autoscroll Show timestamp Carriage return 9600 baud

Clear output

009_Arduino-IDE-test-library.png

We are now ready to start working in XOD.

Inspect the Arduino library

Dependencies

The readme file for the Adafruit TSL2591 Library tells us that we also need the
Adafruit_Sensor library from https://github.com/adafruit/Adafruit_Sensor. We don’t need to
rely on a readme file to inform us of dependencies, as they will also be declared in the library
header file (Adafruit_ TSL2591.h).

F Ak Aok Ak ok kAR Ak Aok ok kA Ak Ak bk ok Ak Ak bk Aok Ak Ak bk ok Ak
%!

@file Adafruit_TSL2591.h

@author KTOWN (adafruit.com)

This is a library for the Adafruit TSL2591 breakout board
This library works with the Adafruit TSL2591 breakout
——> hitps://www.adafruit.com/products/1988

Check out the links above for our tutorials and wiring diagrams

These chips use I2C to communicate

Adafruit invests time and resources providing this open source code,
please support Adafruit and open—source hardware by purchasing
products from Adafruit!

*f

F ek ki ke ok ke ak ik ik ik debok ke ko kok ok

#ifndef _TSL2591 _H_
#define _TSL2591 H_

#include <Adafruit_Sensor.h=
#include <Arduino.h>
#include <Wire.h=

024 tsl2591 header_top.png

Class declaration

The public interface to the class provides the class constructor and various member
functions. We need to create an action node for each of the member functions we want to
use in XOD. We'll see how this is done in the next section.

https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/Adafruit_Sensor

class Adafruit_TSL2591 : public Adafruit_Sensor {
public:
Adafruit_TSL2591(int32_t sensorlID = -1);

boolean begin(TwoWire =theWire);
boolean begin();

void enable(void);

void disable(void);

float calculatelux{uintl6_t ch®, uintl6_t chl);

void setGain(ts12591Gain_t gain);

void setTiming{ts12591IntegrationTime_t integration);
uintl6_t getluminosity({uint&_t channel);

uint32_t getFullLuminosity();

ts12591IntegrationTime_t getTiming();
ts512591Gain_t getGaini();

025 tsl2591 class.png

Start a new XOD project

There is no technical difference between a project and a library. To start a new library click:
File — New Project...

@ XODIDE File Edit Deploy View

MNew Project... T EN
Open Project... #0
Save #S
Save As... #S

Save Copy As... N {#S
Switch Workspace...

Mew Patch... EN

Add Library...
Publish Library...
wavland/433mhz-rf-rmodul

011_new_xod_project.png

Create a new device

We need to declare a new custom type to represent our hardware device. New XOD projects
start with a single patch called main. We will rename this patch tsl2591-device. By
convention, nodes that create a new type to work with hardware are given the suffix -device.
Go to the Project Browser and either left-click on the menu icon or right-click on main.

012_patch_name_main.png

This will bring up a context menu with various options including Rename.

014_context_menu.png

Enter the new name for the patch and hit Confirm.

Rename patch

Only a-z, 0-% and - are allowed. Mame must not begin or end with a hypen, or contain more than cne hypen in a row

015_rename_node.png

Insert nodes

We are now ready to start adding nodes to our device patch.
Hit | or choose:
Edit — Insert Node...

10

@ XODIDE File Edit Deploy View Window Help

Undo
Redo

Cut

Copy
Paste
Select All

wayland/433mhz-rf-module
Insert Node...
Insert Comment

wayland/bmp280-barometer

wayland/bno055-aos

Convert Selected Links to Buses
Project Preferences

Start Dictation...
Emoji & Symbols

016_insert_node.png

The first node we will add is not-implemented-in-xod which will allow us to incorporate C++
code. Start typing the name of this node in the search box and a number of suggestions will
appear. Select xod/patch-nodes/not-implemented-in-xod.

2, not-i

xod/patch-nodes/not-implemented-in-xod

xod/patch-no output-self

xod-cloud/basics/now-iso

xod-cloud/ba fexample-now-iso

017_not_implemented_in_XOD.png

Next add a xod/patch-nodes/output-self node and rename it DEV. The name isn’t
important, but DEV is the convention for devices.

11

018_device_patch.png

After adding the output-self node, two new terminal nodes will automatically appear in the
Project Browser: input-tsl2591-device and output-tsl2591-device.

output-

ts12591-device

019_dev_input_output_nodes.png

Open C++ code editor

Double-click on the not-implemented-in-XOD node to open the C++ code editor which
contains template code.

12

ooty
={ctx);

r, inValue):

020_default_code.png

Quick Help provides a C++ Cheatsheet listing the terminal nodes on the patch. In this case
there is a single output node. Note that the output-self node we named DEV on the patch is
called output_DEYV in the C++ code.

C++ Cheatsheet

¢ output_DEV

021_cpp_cheatsheet.png

Replace the template with the following code:

13

022_device_cpp.png

1.

o 0N

Declare dependencies on the Arduino libraries so that XOD can automatically
download and install them.

Include the header files of the Arduino libraries.

Declare a custom type which describes the hardware module.

Create an instance of the custom type.

The evaluate function is called whenever the node requires updating. The
isSettingUp function returns true on the first transaction. It is used here to ensure
that the initialization code runs once only. The begin function of the
Adafruit_TSL2591 class is called to initialize the sensor; if initialization fails an error is
raised.

Finally an instance of type tsI2591-device is emitted via the patch terminal node DEV.
N.B. The custom type takes its name from the patch.

Document the device

Document the patch-node and terminal output using the Description field on the Inspector
tab. These descriptions will be made available to users of your library via Quick Help.

14

91-device

Create a ts12591-device

027 _tsl2591-device_description_field.png

A TSL2591 device.

028 tsl2591-device_output_description_field.png

Action nodes

The Adafruit_TSL2591 class has several member functions for configuring and reading data
from the sensor. We can make these functions available to XOD by wrapping them inside
nodes.

Function to be wrapped

Let’s take as an example the function used to set the integration time (the length of time
during which the sensing element is collecting charge) of the device. The function is called
setTiming and takes a single argument, an enumerated type named
tsl2591IntegrationTime_t.

15

F¢f Enumeration for the sensor integration timing

typedef enum {

TSL2591_INTEGRATIONTIME_1@@Ms
TSL2591_INTEGRATIONTIME_2@8Ms
T5L2591_INTEGRATIONTIME_ 308M5
T5L2591_INTEGRATIONTIME_408M5
TSL2591_INTEGRATIONTIME_S@@Ms
T5L2591_ INTEGRATIONTIME_ G@aMs

¥} ts12591IntegrationTime_t;

029 _integration_time_enum.png

Add a new patch

@xpad, /f 108 millis
@xel, // 20@ millis
ex02, // 308 millis
@x03, // 408 millis
@x04, /f 508 millis
@x@5, // 60@ millis

Follow the convention of starting the names of action nodes with a verb. We'll name this one
set-timing. Add the following nodes to the patch:

Node Label | Description

input-tsl2591-device DEV A tsl2591-device.

xod/patch-nodes/input-byte TIME Integration time (milliseconds). Options: 100ms
= 00h, 200ms = 01h, 300ms = 02h, 400ms =
03h, 500ms = 04h, 600ms = 05h.

xod/patch-nodes/input-pulse UPD Update

xod/patch-nodes/output-pulse | DONE | Pulse on completion.

DEV | TIME | UPD

DOMNE

030_set-timing_patch.png

e The input to the DEV terminal is a tsl2591-device created using our tsl2591-device

node.

e XOD doesn’t have an enum data type, so we’ll use a byte to specify TIME and list
the available integration times and their corresponding byte values in the description.

16

e Pulses received by UPD will trigger the action of the node.
e The node will output a pulse from DONE when the integration time has been set.

Default values for inputs

We can set default values for node inputs. For example we can set the default integration
time to 300ms by entering 02h in the OUT field of the TIME input.

input-byte

wodes input-byte

040_default_value_input.png

C++ code

Double-click on the not-implemented-in-xod node to open the C++ editor. Replace the
template with the following code. Read comments for an explanation of each line.

031_set-timing_cpp_code.png

17

Repeat the process to generate an action node for each of the functions in the Arduino
library. If you are unsure how to implement any of the action nodes, please refer to
https://xod.io/libs/wayland/ts|2591-light-sensor/.

A My Project

get-gain

get-timing
nput-tsi2591 -device
output-tsl2591-device

read-luminosity

032_action_nodes.png

Quickstart node

Let’s simplify use of our library by creating a single node that provides all of the functionality
a typical user will require. For the TSL2591 sensor, we will assemble a lux meter.

18

read-lux

set-timing

get-timing

FULL IR LUX

033_lux-meter_patch.png

The read-lux action node is triggered by a pulse to UPD and outputs total luminosity
(FULL), infrared luminosity (IR) and lux (LUX). The inputs GAIN and TIME are used to set
sensor gain and integration time respectively. The set-gain and set-timing action nodes are
triggered on the initial boot and also whenever the input values change. Pulse-on-change
nodes (xod/core/pulse-on-change) emit a pulse when the values of their inputs change. The
get-gain and get-timing action nodes report the current sensor gain and integration time
respectively.

The finished lux-meter node will look like this:

033_lux-meter_node.png

19

Example patches

Example patches demonstrate how to use your library and are also invaluable for testing.
Here a clock node is used to initiate a reading from the sensor every second. Tweak nodes
allow the user to adjust the gain and integration time at runtime. Watch nodes display the
values output from the lux-meter.

lux-meter

watch watch watch count

034-example-patch.png

Testing

Upload example patch to Arduino
Deploy — Upload to Arduino...

Upload project to Arduino

ty.usbmodem 14207 (Arduing arduing. o ':*

Debug after upload

Upload

20

035_upload_project_to_Arduino.png

Since we have tweak and watch nodes on the example patch, ensure that the Debug after

upload checkbox is ticked.

Install dependencies

You will be prompted to install dependencies:

Download &
Install

Arduino dependencies missing

036_arduino_dependencies_missing.png

On successful installation you will recipe this message.

Arduino dependencies
installed

037_arduino_dependencies_installed.png

Debugging

Upload the example patch to the Arduino again. Compilation errors will be output on the
Deployment panel.

038_deployment_panel.png

Check output

Once the program is running you should see output to all of the watch nodes.

21

e Are sensible values being reported by all watch nodes?

e Try adjusting the gain and integration time of the sensor using the tweak nodes.

10h | 02h
4

|ux-meter

count

560.00

V|

039_running_example_patch.png

Sharing libraries

The process of sharing your library with other xoders is very simple and the XOD IDE
provides you with the tools needed.

Set metadata

The first step is to set the metadata for your library.
Edit — Project Preferences

22

Project preferences

ved. Mame must not begin or end with a hypen, or contain more than one hypen ina row

¥OD Cloud AP| Key:

040_default_value_input.png

Name Short, but descriptive name (max 20 characters).
License Choose an open source software license.
Version Semver notation: major.minor.patch

XOD Cloud Used only for the feeds service provide by XOD Cloud
API Key

Description Briefly describe the purpose of the library. You may wish to include a link
to the underlying Arduino library and the datasheet for the device.

Publish

When ready to publish, hit:
File — Publish Library...

23

You are about to publish on xod.io

042_publish.png

Updates

To update your library:
1. Open the library project.
2. Make the required changes.
3. Update the metadata.
4. Publish again.

Summary

The process of wrapping class-based Arduino libraries can be summarized as follows:
1. Find Arduino library for device

2. Test Arduino library

3. Familiarize yourself with the class defined by the library
4. Start a new XOD project

5. Create a new device

6. Wrap class member functions in action nodes

7. Create a quickstart node

8. Create one or more example patches

9. Test library

10. Share library with XOD community

Resources

XOD documentation

XOD has good quality documentation (https://xod.io/docs/). The following guides are
particularly relevant:
e \Wrapping class-based Arduino libraries:
https://xod.io/docs/quide/wrapping-arduino-libraries/

24

https://xod.io/docs/guide/wrapping-arduino-libraries/

C++ API: https://xod.io/docs/reference/node-cpp-api/
Error handling: https://xod.io/docs/guide/errors/
Dealing with state: https://xod.io/docs/guide/cpp-state/
Dealing with time: https://xod.io/docs/quide/cpp-time/

XOD forum

XOD has a friendly and helpful community. Don’t be afraid to ask for help on the forum:
https://forum.xod.io/

Existing XOD libraries

You can learn a lot from looking at existing libraries (https://xod.io/libs/), but be aware that
many use an older style of C++ syntax (see https://xod.io/docs/guide/migrating-to-v035/).

Arduino libraries

https://www.arduinolibraries.info
https://adafruit.com
https://www.pololu.com
https://www.sparkfun.com

25

https://xod.io/docs/reference/node-cpp-api/
https://xod.io/docs/guide/errors/
https://xod.io/docs/guide/cpp-state/
https://xod.io/docs/guide/cpp-time/
https://forum.xod.io/
https://xod.io/libs/
https://xod.io/docs/guide/migrating-to-v035/
https://www.arduinolibraries.info/
https://adafruit.com/
https://www.pololu.com/
https://www.sparkfun.com/

