
Using class-based Arduino libraries in
XOD

Overview

New device

Find Arduino library for device

Test the Arduino library
Install Arduino IDE
Add library to IDE
Run an example sketch

Inspect the Arduino library
Dependencies
Class declaration

Start a new XOD project

Create a new device
Insert nodes
Open C++ code editor
Document the device

Action nodes
Function to be wrapped
Add a new patch
Default values for inputs
C++ code

Quickstart node

Example patches

Testing
Upload example patch to Arduino
Install dependencies
Debugging
Check output

Sharing libraries
Set metadata
Publish
Updates

Summary

Resources

XOD documentation
XOD forum
Existing XOD libraries
Arduino libraries

Overview
Arduino libraries exist for a huge range of breakout boards and other devices (see
https://www.arduinolibraries.info/). If you have a little C++ experience, it is easy to
incorporate these libraries into XOD.

In this tutorial we will create a XOD library for the TSL2591 high dynamic range digital light
sensor. Adafruit produce a breakout board for this sensor:
https://learn.adafruit.com/adafruit-tsl2591/

001_tls2591-breakout.png

New device
When presented with a new device the first thing you should do is check if it is already
supported in XOD. Fortunately there is a searchable database of core and contributed
libraries:
https://xod.io/libs/

If you search for “light sensor” or “TSL2591” you will find that a library already exists for this
device (https://xod.io/libs/wayland/tsl2591-light-sensor/). However, for the purposes of this
tutorial, we will pretend that there is no library for the TSL2591.

2

https://xod.io/libs/

Find Arduino library for device
If you cannot find a XOD library for your device, you will need to look for a class-based
Arduino library. Manufacturers of breakout boards typically provide C++ libraries for their
devices. On the product pages of companies such as Adafruit, Polulu and Sparkfun you will
typically find links to code repositories. For more unusual devices a web search will often
find libraries developed by hobbyists.

Adafruit’s code repository for their TSL2591 library is on github:
https://github.com/adafruit/Adafruit_TSL2591_Library

002_adafruit_tls2591_library.png

Test the Arduino library
Once you’ve found a library for your device it is a good idea to test it using the Arduino IDE.
Well written libraries will include example sketches. Reading through the sketches can help
you to understand how the methods in the library are used.

3

Install Arduino IDE
Download and install Arduino IDE on your computer:
https://www.arduino.cc/en/Main/Software

Add library to IDE
From the ​Tools​ menu select ​Manage Libraries...

003_Arduino-IDE-manage-install-lib.png

In the ​Library Manager​ search for ​tsl2591​. Select the most recent version of the Adafruit
TSL2591 Library and click ​Install​.

004_Arduino-IDE-manage-install-lib.png

You will receive the following prompt informing you that the ​Adafruit TSL2591 Library:1.2.1
is dependent on another library, the ​Adafruit Unified Sensor​. Click ​Install all​.

4

005_Adafruit_Unified_Sensor_prompt.png

5

Run an example sketch
Running an example sketch is a good way of checking that:

● The device is wired correctly to the Arduino board.
● The device is working.
● The library is working.

Open an example sketch:
File → Examples → Adafruit TSL2591 → tsl2591

006_open_example_sketch.png

This example sketch will transmit data via serial. Click on the ​Upload​ button.

6

008_tsl2591_sketch.png

Once the program is running on the Arduino, you can open the ​serial monitor​:
Tools → Serial Monitor
The example sketch transmits serial at ​9600 baud​, so make sure this speed is selected in
the ​serial monitor​. If everything is working data will be printed to the ​serial monitor​.

009_Arduino-IDE-test-library.png

We are now ready to start working in XOD.

7

Inspect the Arduino library

Dependencies
The readme file for the Adafruit TSL2591 Library tells us that we also need the
Adafruit_Sensor library from​ ​https://github.com/adafruit/Adafruit_Sensor​. We don’t need to
rely on a readme file to inform us of dependencies, as they will also be declared in the library
header file (Adafruit_TSL2591.h).

024_tsl2591_header_top.png

Class declaration
The public interface to the class provides the class constructor and various member
functions. We need to create an action node for each of the member functions we want to
use in XOD. We’ll see how this is done in the next section.

8

https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/Adafruit_Sensor

025_tsl2591_class.png

Start a new XOD project
There is no technical difference between a project and a library. To start a new library click:
File → New Project...

011_new_xod_project.png

Create a new device
We need to declare a new custom type to represent our hardware device. New XOD projects
start with a single patch called ​main​. We will rename this patch ​tsl2591-device​. By
convention, nodes that create a new type to work with hardware are given the suffix ​-device​.
Go to the ​Project Browser​ and either left-click on the menu icon or right-click on ​main​.

9

012_patch_name_main.png

This will bring up a context menu with various options including ​Rename​.

014_context_menu.png

Enter the new name for the patch and hit ​Confirm​.

015_rename_node.png

Insert nodes
We are now ready to start adding nodes to our device patch.
Hit ​I​ or choose:
Edit → Insert Node...

10

016_insert_node.png

The first node we will add is ​not-implemented-in-xod​ which will allow us to incorporate C++
code. Start typing the name of this node in the search box and a number of suggestions will
appear. Select ​xod/patch-nodes/not-implemented-in-xod​.

017_not_implemented_in_XOD.png

Next add a ​xod/patch-nodes/output-self​ node and rename it ​DEV​. The name isn’t
important, but ​DEV​ is the convention for devices.

11

018_device_patch.png

After adding the ​output-self​ node, two new terminal nodes will automatically appear in the
Project Browser​: ​input-tsl2591-device​ and ​output-tsl2591-device​.

019_dev_input_output_nodes.png

Open C++ code editor
Double-click on the ​not-implemented-in-XOD​ node to open the C++ code editor which
contains template code.

12

020_default_code.png
Quick Help​ provides a C++ Cheatsheet listing the terminal nodes on the patch. In this case
there is a single output node. Note that the ​output-self​ node we named ​DEV​ on the patch is
called ​output_DEV​ in the C++ code.

021_cpp_cheatsheet.png

Replace the template with the following code:

13

022_device_cpp.png

1. Declare dependencies on the Arduino libraries so that XOD can automatically
download and install them.

2. Include the header files of the Arduino libraries.
3. Declare a custom type which describes the hardware module.
4. Create an instance of the custom type.
5. The ​evaluate​ function is called whenever the node requires updating. The

isSettingUp​ function returns true on the first transaction. It is used here to ensure
that the initialization code runs once only. The begin function of the
Adafruit_TSL2591 class is called to initialize the sensor; if initialization fails an error is
raised.

6. Finally an instance of type tsl2591-device is emitted via the patch terminal node ​DEV​.
N.B. The custom type takes its name from the patch.

Document the device
Document the patch-node and terminal output using the ​Description​ field on the ​Inspector
tab. These descriptions will be made available to users of your library via ​Quick Help​.

14

027_tsl2591-device_description_field.png

028_tsl2591-device_output_description_field.png

Action nodes
The Adafruit_TSL2591 class has several member functions for configuring and reading data
from the sensor. We can make these functions available to XOD by wrapping them inside
nodes.

Function to be wrapped
Let’s take as an example the function used to set the integration time (the length of time
during which the sensing element is collecting charge) of the device. The function is called
setTiming​ and takes a single argument, an enumerated type named
tsl2591IntegrationTime_t​.

15

029_integration_time_enum.png

Add a new patch
Follow the convention of starting the names of action nodes with a verb. We’ll name this one
set-timing.​ Add the following nodes to the patch:

030_set-timing_patch.png

● The input to the ​DEV​ terminal is a ​tsl2591-device​ created using our ​tsl2591-device
node.

● XOD doesn’t have an enum data type, so we’ll use a ​byte​ to specify ​TIME​ and list
the available integration times and their corresponding byte values in the description.

16

Node Label Description

input-tsl2591-device DEV A tsl2591-device.

xod/patch-nodes/input-byte TIME Integration time (milliseconds). Options: 100ms
= 00h, 200ms = 01h, 300ms = 02h, 400ms =
03h, 500ms = 04h, 600ms = 05h.

xod/patch-nodes/input-pulse UPD Update

xod/patch-nodes/output-pulse DONE Pulse on completion.

● Pulses received by ​UPD​ will trigger the action of the node.
● The node will output a pulse from ​DONE​ when the integration time has been set.

Default values for inputs
We can set default values for node inputs. For example we can set the default integration
time to ​300ms​ by entering ​02h​ in the ​OUT​ field of the ​TIME​ input.

040_default_value_input.png

C++ code
Double-click on the not-implemented-in-xod node to open the C++ editor. Replace the
template with the following code. Read comments for an explanation of each line.

031_set-timing_cpp_code.png

17

Repeat the process to generate an action node for each of the functions in the Arduino
library. If you are unsure how to implement any of the action nodes, please refer to
https://xod.io/libs/wayland/tsl2591-light-sensor/.

032_action_nodes.png

Quickstart node
Let’s simplify use of our library by creating a single node that provides all of the functionality
a typical user will require. For the TSL2591 sensor, we will assemble a lux meter.

18

033_lux-meter_patch.png

The ​read-lux​ action node is triggered by a pulse to ​UPD​ and outputs total luminosity
(​FULL​), infrared luminosity (​IR​) and lux (​LUX​). The inputs ​GAIN​ and ​TIME​ are used to set
sensor gain and integration time respectively. The set-gain and set-timing action nodes are
triggered on the initial boot and also whenever the input values change. ​Pulse-on-change
nodes (xod/core/pulse-on-change) emit a pulse when the values of their inputs change. The
get-gain​ and ​get-timing​ action nodes report the current sensor gain and integration time
respectively.

The finished lux-meter node will look like this:

033_lux-meter_node.png

19

Example patches
Example patches demonstrate how to use your library and are also invaluable for testing.
Here a ​clock​ node is used to initiate a reading from the sensor every second. ​Tweak​ nodes
allow the user to adjust the gain and integration time at runtime. ​Watch​ nodes display the
values output from the ​lux-meter​.

034-example-patch.png

Testing

Upload example patch to Arduino
Deploy → Upload to Arduino…

20

035_upload_project_to_Arduino.png
Since we have ​tweak​ and ​watch​ nodes on the example patch, ensure that the ​Debug after
upload​ checkbox is ticked.

Install dependencies
You will be prompted to install dependencies:

036_arduino_dependencies_missing.png

On successful installation you will recipe this message.

037_arduino_dependencies_installed.png

Debugging
Upload the example patch to the Arduino again. Compilation errors will be output on the
Deployment​ panel.

038_deployment_panel.png

Check output
Once the program is running you should see output to all of the watch nodes.

21

● Are sensible values being reported by all ​watch​ nodes?
● Try adjusting the gain and integration time of the sensor using the ​tweak​ nodes.

039_running_example_patch.png

Sharing libraries
The process of sharing your library with other xoders is very simple and the XOD IDE
provides you with the tools needed.

Set metadata
The first step is to set the metadata for your library.
Edit → Project Preferences

22

040_default_value_input.png

Publish
When ready to publish, hit:
File → Publish Library…

23

Name Short, but descriptive name (max 20 characters).

License Choose an open source software license.

Version Semver notation: major.minor.patch

XOD Cloud
API Key

Used only for the feeds service provide by ​XOD Cloud

Description Briefly describe the purpose of the library. You may wish to include a link
to the underlying Arduino library and the datasheet for the device.

042_publish.png

Updates
To update your library:

1. Open the library project.
2. Make the required changes.
3. Update the metadata.
4. Publish again.

Summary
The process of wrapping class-based Arduino libraries can be summarized as follows:

1. Find Arduino library for device
2. Test Arduino library
3. Familiarize yourself with the class defined by the library
4. Start a new XOD project
5. Create a new device
6. Wrap class member functions in action nodes
7. Create a quickstart node
8. Create one or more example patches
9. Test library
10. Share library with XOD community

Resources

XOD documentation
XOD has good quality documentation (https://xod.io/docs/). The following guides are
particularly relevant:

● Wrapping class-based Arduino libraries:
https://xod.io/docs/guide/wrapping-arduino-libraries/

24

https://xod.io/docs/guide/wrapping-arduino-libraries/

● C++ API: ​https://xod.io/docs/reference/node-cpp-api/
● Error handling: ​https://xod.io/docs/guide/errors/
● Dealing with state: ​https://xod.io/docs/guide/cpp-state/
● Dealing with time: ​https://xod.io/docs/guide/cpp-time/

XOD forum
XOD has a friendly and helpful community. Don’t be afraid to ask for help on the forum:
https://forum.xod.io/

Existing XOD libraries
You can learn a lot from looking at existing libraries (​https://xod.io/libs/​), but be aware that
many use an older style of C++ syntax (see ​https://xod.io/docs/guide/migrating-to-v035/​).

Arduino libraries
● https://www.arduinolibraries.info
● https://adafruit.com
● https://www.pololu.com
● https://www.sparkfun.com

25

https://xod.io/docs/reference/node-cpp-api/
https://xod.io/docs/guide/errors/
https://xod.io/docs/guide/cpp-state/
https://xod.io/docs/guide/cpp-time/
https://forum.xod.io/
https://xod.io/libs/
https://xod.io/docs/guide/migrating-to-v035/
https://www.arduinolibraries.info/
https://adafruit.com/
https://www.pololu.com/
https://www.sparkfun.com/

