
No-Code Programming
for Biology

Beginner’s Guide
Stephanie Norwood
University of Cambridge

No-Code Programming
for Biology
Beginner’s Guide

Learn how to:

•Build your own devices for use in
biological research

•Use simple electronic components such
as screens and sensors

•Programme without using code

•Understand and control an Arduino board

No-Code Programming for Biology | Beginner’s Guide

Biomaker was started in 2014 as an interdisciplinary scheme for project-based learning and
innovation, coordinated by the Synthetic Biology Interdisciplinary Research Centre at the
University of Cambridge and OpenPlant, one of the UK’s six National Synthetic Biology Research
Centres. It has been funded mainly by contributions from the BBSRC and EPSRC research
councils in the UK, and a NERC/NSF UK-US collaborative grant programme.

Biomaker provides funding for interdisciplinary team-based projects at the intersection of
electronics, computer science, 3D printing, sensor technology, low cost DIY instrumentation and
biology, as well as workshops and outreach events. The initiative aims to build open
technologies and promote development of research skills and collaborations. It taps into
existing open standards and a rich ecosystem of resources for microcontrollers, first
established to simplify programming and physical computing for designers, artists and
scientists. These tools allow biologists to program and develop real-world laboratory tools. The
Biomaker project also provides a direct route for physical scientists and engineers to get hands-
on experience with biological systems.

We aim to lower the barriers that impede interdisciplinary work, and to promote the kinds of
training that are useful for building instruments and devices for biological experiments in the lab
and field. We develop starter kits for no-code programming that allow biologists to build
bioinstrument prototypes for measurement and control of biological systems. These have a
wide range of applications including instrumentation, microscopy, microfluidics, 3D printing,
biomedical devices, DNA design, plant sciences and outreach and public engagement. You can
find examples of documented projects on the Biomaker website at www.biomaker.org.

An important aspect of Biomaker is the use of open source and low cost tools and hardware,
which facilitate equitable access to fundamental knowledge and technology, encourage a
collaborative environment, and support the establishment of an open, sustainable bioeconomy.

OpenPlant Biomaker Initiative

i

https://www.biomaker.org

This beginner’s guide has been
put together by the Biomaker
team to help you get to grips
with the basics of biomaking and
building custom instrumentation
for biological research.

Designed for those with little to
no experience working with
coding or hardware, this guide
makes use of free open-source
software and low-cost hardware
to introduce you the principles
behind making your own
instruments.

Working though this guide can
be useful as a base for those
with a specific challenge or task
in mind, as well as for those who
are simply looking to expand
their biological skillset.

Whilst we will focus on learning
aspects that are useful for
biological research, the
information in this guide can
also be used for a wide range of
no-code programming
applications, and we hope that
these skills can be applicable
whatever your area of interest.

The guide will teach you how to
use the free open-source, no-
code programming software
XOD, as well as how to use some
simple low-cost hardware
devices, such as LEDs, sensors
and screens.

It is built to accompany the Grove
All-In-One Beginner Kit for
Arduino development board,
designed by Seeed Studio.
Alternative versions of the
Arduino Uno board and
accompanying components can
also be used, but you will need to
wire-up these components before
you start.

We have chosen the Grove
Beginner Kit for Arduino as this
all-in-one kit will allow you to get
started without having to wire-up
components. At the time of
writing, this kit is available from
UK stockists Cool Components
and Mouser Electronics for
approximately £15-£23. The
Biomaker team also has a
number of free kits available. To
request a kit, please get in touch
with the Biomaker team.

AUTHORS

Stephanie Norwood
Jim Haseloff

Welcome to the
No-Code Programming
for Biology
Beginner’s Guide

ii

This work is licensed under
a Creative Commons
Attribution-NonCommercial-
ShareAlike 3.0 Unported
License.

IMAGES

Stephanie Norwood
SparkFun Electronics
Adafruit Industries
Biomaker Challenge
Participants

XOD LIBRARY CREATORS

Matt Wayland
Marco Aita
Cesar Sosa
XOD user: gst
XOD user: e
XOD user: gweimer

CONTACTS

Stephanie Norwood
synbio@hermes.cam.ac.uk

Jim Haseloff
jh295@cam.ac.uk

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

No-Code Programming for Biology | Beginner’s Guide

Lesson 1: Introduction 01

The Guide 04

The Starter Kit 06

The Microcontroller 08

The XOD IDE 12

Lesson 2: Getting Started 17

Setting up Your Board 19

Task 1: Testing Your Board 20

Task 2: Input and Output Devices 26

Lesson 3: Explore XOD 31

Task 3: Tweak and Watch Nodes 33

Task 4: Flip, Clock and Count Nodes 36

Contents

iii

Task 5: Concat, Join and Format-Number Nodes 42

Lesson 4: Building Devices 47

Task 6: Creating New Nodes 49

Task 7: Using Buses 56

Task 8: Logic Programmes 60

Task 9: Sequences and Loops 64

Lesson 5: Next Steps 73

Expanding Your Capability 75

Case Studies 80

Additional Information 84

Glossary 90

Index 94

iv

No-Code Programming for Biology | Beginner’s Guide

v

SETTING UP YOUR BOARD
TASK 1: TESTING YOUR BOARD

TASK 2: INPUT AND OUTPUT DEVICES

Lesson 2:
Getting Started

THE GUIDE
THE STARTER KIT

THE MICROCONTROLLER
THE XOD IDE

Lesson 1:
Introduction

No-Code Programming
for Biology
Beginner’s Guide

vi

EXPANDING YOUR CAPABILITY
CASE STUDIES

ADDITIONAL INFORMATION

Lesson 5:
Next Steps

BBSRC EPSRC NERC
NSF OPENPLANT SYNBIO IRC

UNIVERSITY OF CAMBRIDGE

Funders and
Sponsors

TASK 6: CREATING NEW NODES
TASK 7: USING BUSES

TASK 8: LOGIC PROGRAMMES
TASK 9: SEQUENCES AND LOOPS

Lesson 4:
Building Devices

TASK 3: TWEAK AND WATCH NODES
TASK 4: FLIP, CLOCK AND COUNT NODES

TASK 5: CONCAT, JOIN AND FORMAT-NUMBER NODES

Lesson 3:
Explore XOD

No-Code Programming for Biology | Beginner’s Guide

vii

PAGE: 1 // 96

Lesson 1:
Introduction

The Guide

The XOD IDE

The Microcontroller

The Starter Kit

PAGE: 2 // 96

No-Code Programming for Biology | Beginner’s Guide

Biomaker and
No-Code Programming for Biology

Introduction

The Biomaker team has put together this guide to introduce biologists, or other
scientists with little formal programming training, to the basics of Biomaking,
including:

• Use of Arduino-based microcontrollers
• Use of sensors, displays and actuators
• Use of XOD visual programming

These new skills can be enabling in many ways. Scientists can gain expertise
and new ways of thinking to apply to their work. Moreover, the components for
this type of instrumentation are often very cheap, especially when compared
with off-the-shelf commercial solutions. The use of simple hardware and
software resources allow easy modification, extension and repair of custom
instruments, and the use of open-source components and systems promotes
sharing of information and set up of collaborative projects. This creates a
growing set of resources for the community to draw from, and build upon.

We hope that you enjoy taking part in this online course, that you learn
something new and that you find it useful for your future career. Most of all, we
encourage anyone who is interested in developing their skills further to sign up
for the Biomaker Challenge, where you can join a team of like-minded scientists
and engineers to build bioinstruments for real-world applications.

PAGE: 3 // 96

In this first lesson we will cover some of the basic background information you will need to
know before you start programming.

First, we will take a look at this guide and how to use it. Then we will look at the Grove board
and explore each of it’s built-in devices, including how they might be used. Next, we will briefly
discuss microcontrollers and how to programme them, and finally we will introduce you to the
XOD IDE software and some of it’s terminology.

These basics will help you to become familiar with the tools we will be using throughout this
guide. Many of these concepts will be covered again as we apply this knowledge to perform
hands-on tasks later in this guide.

OBJECTIVES

By the end of this chapter you should be able to:

• Name the different parts of the Grove board and give examples of how they might be used.
• Describe the basic concepts of a microcontroller.
• Describe the steps involved in programming the Arduino board and how information is

transmitted in this system.
• Name three of the most common types of electronic communication and explain the

difference between them.
• List the pin (port) connections for each of the board’s components.
• Recall the different parts of the XOD IDE software and describe what each part is used for.
• Recount the three key terms used in XOD programming and what they mean.
• List the data types used in XOD and give examples of each.

The Grove All-in-One Beginner Kit for Arduino

PAGE: 4 // 96

No-Code Programming for Biology | Beginner’s Guide

The Guide

This chapter will give you a
brief introduction to the
Biomaker starter kit,

including the Grove board,
how to control it, and how to

use XOD.

This chapter will take you
through a few simple tasks
to get started with using

your board and the XOD IDE.
You’ll learn to use the LED,
buzzer and button devices.

This chapter will explore
some of the most useful

functions of XOD.
Understanding how to use
these functions will give you
a great base to work from.

This chapter will delve into
some more complex

functions in XOD. By the end,
you should be able to start
developing your own ideas,
programmes and devices!

Getting
Started

Explore
XOD

Building
DevicesIntroduction

The guide is split into four core lessons, each described
below. These lessons are designed to be worked through in
order, and start by exploring the Biomaker starter kit and the
XOD integrated development environment (IDE). The rest of
the guide will then take you through a series of tasks
designed to introduce you to your board, as well as some key
aspects of programming in XOD.

The final chapter provides some additional useful information,
as well as some details about how to expand your skills and
get started with designing your own devices.

In addition to the information in this guide, the XOD website
also provides some useful tutorials and a community forum
where you can find help at www.xod.io

The Guide

The No-Code Programming for Biology Handbook
In addition to this beginner’s guide, the OpenPlant Biomaker team has also created a range of useful beginner and advanced
resources available on the Biomaker website. These resources are designed to help you learn more about the possibilities of
Biomaking and to expand your capability to start building your own devices. They include additional tutorials, videos and
information about commonly used hardware and expansion devices.

All of the Biomaker and No-Code Programming for Biology resources are available to download on the Biomaker website at
www.biomaker.org/resources.

https://www.biomaker.org/resources

PAGE: 5 // 96

Tools to Accompany the Guide

GROVE BEGINNER
KIT FOR ARDUINO

BIOMAKER
WEBSITE

The Biomaker starter kit is composed of this beginner’s guide, and the
Grove Beginner Kit for Arduino. This kit is made by the open source
hardware company Seeed Studio and is based on a simple Arduino
microcontroller. The kit comes as an integrated PCB board with several
useful input and output devices already connected and ready to go. No
soldering, wiring or connecting of components means it’s perfect for
getting started with hardware!

The Starter Kit section (p6-7) provides a quick summary of each part of
the board and what it might be used for, whilst the Microcontroller
section (p8-11) gives a little background on the Arduino board.

The Biomaker website (www.biomaker.org) hosts a variety of useful
materials, including digital downloads of this guide, the accompanying
tutorial file, and a number of other Biomaker tutorials and handbooks.
These can be found under the ‘Getting Started’ tab.

You can also find examples of previous Biomaker projects on the website
under the ‘Projects’ tab. With over 180 projects so far, there is plenty of
inspiration for the budding Biomaker. Projects are also documented on
the Biomaker Hackster Hub (www.hackster.io/biomaker).

XOD IDE

XOD WEBSITE

The XOD integrated development environment (IDE) is a free open-source
software that allows you to programme microcontroller-based devices,
such as Grove or Arduino boards, using visual ‘nodes’ rather than written
code. Nodes can represent devices or functions, and by linking them
together in different ways you can create a wide variety of different
programmes. Programming visually like this can save some of the time
and energy required to learn a new language and large amounts of
syntax.

The XOD IDE section (p12-15) provides a quick summary of the different
parts of the XOD IDE, and what you’ll see when you first load the
software, as well as some useful terminology used in XOD programming.

The XOD website (www.xod.io) provides plenty of useful information for
beginners, including tutorials and a user guide under the ‘Documentation’
tab, a database of libraries under the ‘Libraries’ tab, and a very helpful
forum under the ‘Community’ tab.

https://www.biomaker.org/
https://www.hackster.io/biomaker/
https://xod.io/

PAGE: 6 // 96

No-Code Programming for Biology | Beginner’s Guide

The Starter Kit The Biomaker starter kit is composed of this
beginner’s guide, and the Grove Beginner Kit for
Arduino. This kit is made by the open source
hardware company Seeed Studio and is based on
a simple Arduino microcontroller.

2

3

4 5

1

LED

A red light emitting diode (LED). This
light can be used as a notification or
warning signal in devices.

1

BUZZER

Inbuilt piezoelectric buzzer. Can be
programmed to emit tones at different
frequencies.

2

OLED SCREEN

High quality OLED screen, which can
be used to display both images and
text. It is a 64x128 pixel matrix which
can display desired content in
monochrome (black and white).

3

BUTTON

A simple button that responds to user
input (presses). Can be used as an
on/off switch or trigger.

4

ROTARY POTENTIOMETER

Also known as a knob sensor as it
senses the rotation angle of the knob.
Can be used as a dial to change
volume or brightness.

5

11

MICROCONTROLLER
DEVELOPMENT BOARD

Based on the Arduino Uno and Seeeduino Lotus development
board, this module is the brains of the board.

An ATmega328P microcontroller chip lies at the core, acting
as small low-power computer that can be reprogrammed to
create whatever device you wish.

11

PAGE: 7 // 96

LIGHT SENSOR

A photoresistor that can detect the
light intensity of the environment.6

The kit comes as an integrated PCB board with several useful input and output devices already
connected and ready to go. No soldering, wiring or connecting of components means it’s
perfect for getting started with hardware!

Below is a quick summary of each part of the board and what they might be used for.

6 7

8

9 10

SOUND SENSOR

A simple microphone that can detect
the sound intensity of the
environment.

7

Also known as a hygrometer. A pre-
callibrated digital sensor that can
measure the temperature and humidity
of the environment. Will not work
below 0ºC.

TEMPERATURE AND HUMIDITY SENSOR8

AIR PRESSURE SENSOR

Also known as a barometer. A high-
precision digital sensor that can
measure both air pressure and
temperature. Can also be used to
measure altitude.

9

3-AXIS ACCELERATION SENSOR

Also known as an accelerometer,
which senses movement of the board.
It can be used to measure orientation,
tilting, movement or gestures.

10The white plug sockets in the centre and yellow header sockets around the
edges can be used to plug in additional components.

This module also has a reset button to reset your programme at any time, and a
micro USB port, to connect the board to your computer.

A USB cable is provided in the right-hand compartment of the Grove box, and
Grove cables (to connect components to the white sockets) are provided in the
left-hand compartment of the Grove box.

PAGE: 8 // 96

No-Code Programming for Biology | Beginner’s Guide

The Microcontroller

What is a Microcontroller?

A microcontroller is a small low-power computer
encapsulated in a tiny electronic chip. In contrast
to a general purpose computer like a laptop or PC,
microcontrollers are often designed to complete
one task and run one specific programme. They
are low cost and only require small amounts of
power, so they are often used in simple electronic
devices such as kitchen appliances, implantable
medical devices and power tools.

Like any other computer, a microcontroller has a
Central Processing Unit (CPU), a ‘long-term’
memory (Electrically Programable Read Only
Memory, EPROM) for holding your programme,
and a ‘short-term’ memory (Random Access
Memory, RAM) for holding and accessing user
data. It communicates with the outside world via a
series of metal pins that can either send (output)
or receive (input) information.

The ATmega328P
microcontroller used
in the Arduino board

A microcontroller development board, like the Grove Arduino board, houses a
microcontroller chip on a small PCB board alongside some additional parts and
connections making it easy for anyone to programme and connect
components to a microcontroller.

Development boards are intended to be cheap and easily accessible, and are
often used for developing prototypes and custom instruments. To get an idea
of the wide range of projects that are possible to achieve using an Arduino
development board, take a look at the project documentation platform
Hackster at www.hackster.io/Arduino.

Location of the ATmega328P microcontroller on the Grove board (red circle)

https://www.hackster.io/arduino

PAGE: 9 // 96

Controlling Your Arduino Board

In order to tell the Grove board what to do you will need to plug it into a computer. This is
referred to as the development host, as it is where you will write and develop the programme
you want to install. The diagram below explains how information is transferred from your
computer to the board. Once the programme has been transferred, the board can be
disconnected and will be able to run the desired programme independently of your computer,
although it will need an alternative power supply. The board can be programmed to perform a
multitude of different tasks depending on what components you want to use, and what
programmes you install.

Workflow for programming your Arduino board

Write your programme using XOD software

Upload your programme

Information is sent from the computer to the Grove board via a USB cable

Information is received by the Grove board

The programme is written to the EPROM (long-term) memory of the microcontroller
chip. This allows the board to act as its own independent computer, carrying out the
specific programme you have uploaded.

Information is sent to the onboard components via the microcontroller pins. The
programme stored in the microcontroller's memory will tell the components what to
do, for example, turn on the buzzer at a certain pitch.

1
2
3
4
5

6

PAGE: 10 // 96

No-Code Programming for Biology | Beginner’s Guide

The Microcontroller

Types of Communication

There are several different ways for the board to communicate with your
components. These are known as communication protocols, and they are the
different ways in which data can be transferred between devices. Which pin is
connected to which device depends on what type of communication protocol is
used, and that depends on the type of device. Below we describe the three
types of communication that are used on the Grove board.

It is important to be aware of these different communication types, as they will
determine the board’s pin connects (see next page), as well as how to plug in
any additional components you would like to add to your board.

Analog sockets are used to connect analog input and
output devices. They can transmit signals that are
continuous (meaning they can have an infinite amount of
values within a given range), unlike digital sockets which
can only transmit signals in two states: on and off. Most
sensors are analog sensors.

Digital sockets are also used to connect input and output
devices. However, unlike analog devices, digital devices
cannot take a range of values, they can only
communicate by switching between two states: on and
off. These digital sockets are used for most non-sensor
components.

This covers the three pin types used to connect the Grove board’s inbuilt
components. Arduino boards are also able to connect to devices using two
other communication protocols, known as UART and SPI. We will not use these
communication types in this guide, but if you would like to learn more you can
find an excellent tutorial comparing I2C, UART and SPI protocols on the
SparkFun website at www.learn.sparkfun.com/tutorials/i2c.

For devices which deal with both inputs and outputs we
need duplex communication protocols, which can
transmit data in both directions. The duplex protocol
used on the Grove board is I2C.

Inter-integrated circuit (I2C) pins provide a way to
communicate with multiple devices at once. In this case,
several devices are connected to the same pin, and each
device is given a “name” (known as an address).
Addresses are written as XXh, with XX being a two digit
code of numbers and letters. For example 19h or 3Ch.

ANALOG

I2C

DIGITAL

https://learn.sparkfun.com/tutorials/i2c

PAGE: 11 // 96

Pin Connections

Once your programme has been uploaded to the microcontroller chip, the chip needs to
communicate with the board's components. Information can either be sent as an output from
the microcontroller to the components, or received by the microcontroller as an input from a
component.

Each device on the board is connected to both to the power source and to one or more of the
pins (also known as ‘ports’) on the microcontroller chip. This allows the microcontroller to
communicate with the components. It is important to know which component is connected to
which pin, as we will need to use this information when we are programming.

The table below outlines which onboard devices are connected to which pins.

PIN DEVICE

A0 Rotary Potentiometer

A2 Sound Sensor

A6 Light Sensor

D3 Temperature and Humidity Sensor

D4 LED

D5 Buzzer

D6 Button

I2C (19h) Three-Axis Accelerator

I2C (77h) Air Pressure Sensor

I2C (3Ch) OLED Screen

PAGE: 12 // 96

No-Code Programming for Biology | Beginner’s Guide

2

4

5

3

The XOD IDE The XOD integrated development environment
(IDE) is a free open-source software that allows
you to programme microcontroller-based devices,
such as Grove or Arduino boards, using visual
‘nodes’ rather than written code.

2
The four buttons to the left of the
Project Browser represent (from left-
to-right):

ADD PATCH
Lets you add a new patch to your
project.

ADD LIBRARY
Lets you install new libraries. You can
download libraries that other users
have made to expand the number of
nodes available.

FILTER
Lets you filter what libraries and nodes
you can see.

PROJECT BROWSER MENU
Lets you minimise or move the Project
Browser pane.

YOUR PATCH

The central part of your screen
displays the XOD patch you currently
have open. A patch is a space for you
to create your programme. It is like a
file in another programme, and can be
used to create one small programme,
or one section of a larger programme.
You can create multiple patches and
store them together in a project.

When you first open the XOD IDE You
will see a project called ‘welcome-to-
xod’. This is a pre-installed tutorial
from XOD. You can create a new
project by navigating to ‘File > New
Project’ in the menu bar.

1

QUICK HELP

The quick help pane provides
information about whatever node you
have selected at the time. Click on a
node to see information about what it
does and what each of it’s inputs and
outputs (‘pins’) do.

You can toggle this pane on and off
using the question mark button at the
top right of the screen.

6

PAGE: 13 // 96

6

7

Nodes can represent devices or functions, and by linking them together in different ways you
can create a wide variety of different programmes. Programming visually like this can save
some of the time and energy required to learn a new language and large amounts of syntax.

Below is a quick summary of the different parts of the XOD IDE, and what you’ll see when you
first load the software.

5 INSPECTOR

The Inspector pane shows information
about the node or patch that you have
selected at the time. This is where you
will input information and change the
properties of your nodes (e.g. you can
tell the programme which of the
microcontroller’s ports your
component is connected to).

This pane also contains the Label and
Description boxes, which you can use
to help document your programmes

4 PROJECT BROWSER:
LIBRARIES

The bottom half of the Project Browser
pane shows all of the libraries you
have installed. When you first use XOD
these will be limited to the basic XOD
libraries (e.g. xod/bits, xod/core).
Libraries with red icons have an error
somewhere in their patches.

3 PROJECT BROWSER:
PROJECT PATCHES

The top half of the Project Browser
pane shows the project you have open.
If you click the drop down arrow next
to the project name you will be able to
see all of the patches within your
project.

7
The four buttons at the bottom of the
patch represent (from left-to-right):

UPLOAD TO ARDUINO
Upload your patch to the board.

UPLOAD AND DEBUG
Upload the patch, and watch what’s

happening on your screen at the same
time. Useful for testing programmes
and debugging.

SIMULATE
Simulate your programme without
hardware. Useful for getting started.

TOGGLE DEPLOYMENT PANE
Toggle the Deployment pane on and
off to see how the upload is working.

1

PAGE: 14 // 96

No-Code Programming for Biology | Beginner’s Guide

XOD Terminology

Nodes
Nodes are the building blocks of a programme in XOD.
Depicted as a black rectangle with white border, they will
display their name in the middle, and have a number of
small circular inputs and outputs on the the top and
bottom, known as pins. Nodes can represent any number
of things, from hardware (like a LED or sensor) to
mathematical or logical operations (like add, subtract,
and, or, if etc.).

Pins
In XOD, ‘pin’ refers to the inputs and outputs of a node,
which are represented as small circles. Input pins are
located on the top edge of a node, and output pins are
located on the bottom edge of a node. Pins can have
different data types (see next page) and are coloured
accordingly. The name of a pin will appear below the
circle, and the current value of a pin will appear above it.

Note: to avoid confusion with the ‘pins’ on the
microcontroller, XOD refers to these as ‘ports’, i.e. what
Grove refers to as ‘pin A0’ XOD refers to a ‘port A0’.

Links
Links are used to connect nodes. To create a link click
on an output pin from one node, and then on an input pin
from another node (or visa versa). Once a pin is linked,
the circle will change to a solid colour. Pins of one data
type can only be connected to certain other types (e.g. a
number pin can be connected to another number pin, a
string pin, or a boolean pin, but not a byte, port or pulse
pin). XOD will not let you connect pin types that do not
work together.

The XOD IDE

PAGE: 15 // 96

XOD Data Types

Port
Port pins represent the different ‘ports’
(microcontroller pins) on the board, i.e.
A0-A6 and D0-D13. We will use these
pins to tell hardware nodes which pin/
port the hardware is connected to.

String
Strings pins represent strings of text.
They are used to input text or read out
text. Usually this is text input by or to
be read by the user, e.g. text to be
displayed on a screen.

Pulse
Pulse pins are like triggers. They don’t
represent any specific type of data, but
they are used to signify when
something has happened, or to trigger
something to happen at a specific time.

Boolean
Boolean pins represent logical
information, i.e. they can only be in two
states: True (on) or False (off). They
can be used like a switch, and are often
used when working with logic nodes
such as ‘and’ ‘or’ etc.

Number
Number pins are very simple: they
represent numbers. Numbers can be
integers or fractions in the range ±16
millions, and can display up to 6
significant digits.

Byte
Byte pins represent bytes, a
fundamental data type in computing.
They can be written in a variety of
ways, but we will use hexadecimals,
which contains two digits (0-9,A-F)
followed by h-suffix (e.g. 3Ch).

Pins in XOD can take a number of different data types depending on what they represent. Each data type is represented by a
distinct colour. Below is a description of the six main data types in XOD. Custom data types are also available, but we will not
discuss these here. A comprehensive explanation of each XOD data type and how they interact can be found at www.xod.io/docs/
guide/data-types and www.xod.io/docs/reference/data-types respectively.

PAGE: 16 // 96

No-Code Programming for Biology | Beginner’s Guide

PAGE: 17 // 96

Lesson 2:
Getting Started

Input and Output Devices

Setting up Your Board

Testing Your Board

PAGE: 18 // 96

No-Code Programming for Biology | Beginner’s Guide

Getting Started

This chapter is all about how to get started with no-code programming and
using your board.

Beginning with ‘Setting up your Board’, you will learn how to set up your
computer, including how to download the XOD IDE, USB drivers and Biomaker
tutorial files.

This is followed by two tasks: ‘Testing your Board’ and ‘Input and Output
Devices’. In Task 1 you will use the XOD IDE to test your connection and
programme the simple LED on your board. In Task 2 you will learn how to build
a simple device using the button and buzzer modules on your board, as well as
expanding your knowledge of how to use XOD.

OBJECTIVES

By the end of this chapter you should be able to:

• Prepare your Biomaker starter kit by downloading the relevant software
and drivers, plugging in your board, and opening the XOD IDE.

• Name the different sections of the XOD IDE and understand what they are
used for.

• Apply your knowledge of the XOD IDE to perform the following simple
tasks: add a node, change pin settings, connect nodes, add a library.

• Use the XOD IDE to upload programmes to your board.
• Use the XOD IDE to clear programmes from your board.
• Use three of the inbuilt components on the Grove board: the LED, the

buzzer and the button.
• Understand how to troubleshoot your programme and find additional help.
• Understand how input and output devices can be used together to build

simple devices.

The XOD welcome screen

PAGE: 19 // 96

Downloads

XOD

TUTORIALS

To download the free XOD software, simply visit www.xod.io and
download the desktop IDE from the XOD homepage. You will need to
download the correct IDE for your operating system (Windows, MacOS,
Linux etc.).

Note that a browser-based IDE is also available, but does not support
hardware, so is not suitable for use with this guide.

To accompany this guide, the Biomaker team has created a XOD tutorial
file. This file will allow you to work through the tasks in this guide within
the XOD environment.

You can choose to work through the tasks by using the step-by-step
instructions in this book, by using the XOD tutorial file, or by using a
combination of both.

If you chose to use the XOD tutorial file, we advise that you take the time
to read though the introduction and information at the start of each
chapter in this guide, otherwise you may miss out on useful information.

You can download the XOD tutorial file on the Biomaker website at:
www.biomaker.org/nocode-programming-for-biology-handbook.

USB DRIVER For your computer to communicate with your Arduino board it will need
to have the correct driver installed, in this case, a CP210 driver. Most
operating systems will already have the correct drivers installed,
including: Windows 7 and 10, Mac OSX v10.10.5 (Yosemite) to v10.15.5
(Catalina), Linux and Ubuntu v18.04.2, 64-bit.

If you are using one of the above systems we suggest ignoring this step
and continuing with the guide.

If you are using a different operating system, or are having trouble
connecting with your board, you may need to download a CP210 driver.
Downloads for most common operating systems are available from
Silabs at: www.silabs.com/products/development-tools/software/usb-
to-uart-bridge-vcp-drivers.

Setting up your Board

PAGE: 20 // 96

No-Code Programming for Biology | Beginner’s Guide

Testing your Board

Task 1: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (LED and Button modules)
• USB-A to micro USB cable

Now that you’ve downloaded the software you’re all set and
ready to get stuck in!

This task will walk you through how to connect your board to
the computer and upload your first programme using XOD.

We’ll be using the LED light in the top left corner of the board
to test our connection.

You may notice that when you first plug in the board the OLED
screen in the middle-left turns on. This is part of the inbuilt
demo mode on the board. You can learn more about this in
the Grove User Manual.

PLUG IN YOUR BOARD

1 2

OPEN THE XOD IDE

Open up the XOD software on your computer.

If you are using the tutorial file provided, open this file in
XOD. You can follow the instructions in patches tuto101-
tuto114 to complete this task.

Use the USB cable provided to plug your board into the
computer. You can find this cable in the right-hand
compartment of the Grove box. Plug the micro USB end
into the socket at the bottom of the central section of the
board, and the standard USB (USB-A) end into your
computer.

PAGE: 21 // 96

ADD AN LED NODE

3 4

SELECT THE NODE

Click on the led node.
The outer edge will
turn blue and more
information will appear
in the Inspector pane
on the bottom left.

Using the Project Browser on the top left, find the xod/
common-hardware library, click the dropdown menu and
find the node called “led”. Click on this node and drag it
into the patch. This is one of several ways to add a new
node. See the Adding Nodes to your Patch box for more
information on alternative methods.

Adding Nodes to your Patch
There are several different ways to add a node to your XOD patch, and which one you use is completely up to you!

1. DRAG FROM LIBRARIES
As described above. If you know the library the node is in, you can find the library in the Project Browser, click the
dropdown menu, click on the node, drag it into the patch and release.

2. DOUBLE CLICK ON THE PATCH
If you know the name of the node you want, or want to search for a node you can use the search bar. Double click
anywhere in your patch and the search bar will appear. Start typing the name of the node and options will appear.
Click on the correct node and it will insert into your patch.

3. KEYBOARD SHORTCUT
Similar to double-clicking the patch. Click anywhere on the patch and press ‘i’ on your keyboard. This will bring up the
same search bar as above.

4. MENU BAR
This is a third way to bring up the search bar. Select ‘Edit > Insert Node...’ from the menu bar.

PAGE: 22 // 96

No-Code Programming for Biology | Beginner’s Guide

9 10

SET BOARD MODEL SET SERIAL PORT

11

WATCH YOUR LED!

Click upload and watch the LED on your board. It should
light up!

If not, don’t worry! Take a look at the Troubleshooting
box on the next page (p25).

Use the dropdown
menu to select the
option that ends in
‘(Silicon Labs)’.

Use the dropdown
menu to select
‘Arduino Uno’ or
‘Arduino/Genuino Uno’.

Testing your Board

SET PORT PIN

5 6 7

SET LUM PIN SET ACT PIN

ACT is a boolean pin
that can only be true or
false. Use the
dropdown to set this to
‘True’. This makes sure
the LED responds.

LUM stands for
luminance, i.e. how
bright the LED is on a
scale of 0-1. Set this to
1 (brightest level) by
typing ‘1’.

The LED on the board
is connected to port
D4, so click on the text
box next to PORT and
set this to D4 by typing
‘D4’.

UPLOAD

8

Click on the small
lightening icon in the
bottom right, or select
‘Deploy > Upload to
Arduino...’ from the
menu bar.

PAGE: 23 // 96

ADD A BUTTON NODE

12

Now let’s add another
node. Using one of the
ways described on
p21, add a button node
from the xod/common-
hardware library.

13

SET BUTTON PINS:
UPD PIN

The UPD pin specifies how often the programme
updates. This can be set to ‘Never’, ‘On Boot (Boot)’, or
‘Continuously (Loop)’. Alternatively another node can be
connected to this pin and used to determine how often it
updates. Make sure this is set to ‘Continuously (Loop)’,
so that whenever we press the button it is read instantly.

SET BUTTON PINS:
PORT PIN

14

As with the LED node,
PORT specifies which
port the button is
connected to. Set this
to ‘D6’.

CONNECT THE NODES

15

We want the LED to turn on whenever we press the
button, so we need to connect the button output pin PRS
(press) to the led input pin LUM. Do this by clicking on
the PRS pin and then on the LUM pin. Now when you
click on the led node you will not be able to set the LUM
pin, because it’s value is determined by button node.

PAGE: 24 // 96

No-Code Programming for Biology | Beginner’s Guide

Testing your Board

17

ADD A NOT NODE

To invert the signal from the button we can use a
different type of node that represent a logic function,
rather than a piece of hardware. Insert a not node from
the xod/core library.

20

EXPERIMENT!

Congrats! you've now made a simple programme that
uses an input (the button) and an output (the led) to
affect change. Why not try experimenting with this
patch? Play around with some pins. E.g. change the led
ACT pin, or link a clock node to the button UPD pin and
see what happens. See what you can achieve!

REWIRE THE PATCH

18

UPLOAD AND TEST

Now try uploading your
programme again.
This time it should
work as planned.

Delete the link
between the button
and led. Connect PRS
to the not input pin,
and the not output pin
to LUM.

19

16

UPLOAD AND TEST

Upload the patch and see what happens. You will notice
that the programme is backwards. The LED is on and
turns off when you press it. This is because the board’s
buttons are set to be on by default, and turn off when
pressed. We can fix this programme with a logic node.

PAGE: 25 // 96

3

UPLOAD

Upload the empty
patch by clicking the
upload button as
before. This will turn
off the LED and clear
the board.

MAKE A NEW PATCH

1 2

NAME THE PATCH

Type a name for your
new patch, e.g. ‘clear’
and click confirm or
press the Enter key.

Add a new patch by
clicking the ‘Add patch’
button in the project
browser or selecting
‘File > New Patch...’
from the menu.

Troubleshooting
If your LED doesn’t light up straight away there a few quick things to check:

1. IS THE BOARD PLUGGED IN CORRECTLY?
If your board is plugged in correctly the power light on the right side of the Seeeduino module should light up. If not,
make sure that the USB cable is plugged in fully.

2. HAVE YOU SET YOUR NODE PARAMETERS CORRECTLY?
Setting the wrong parameters is a common mistake. In this case you should make sure the pins are set as follows:
PORT = D4 LUM = 1 ACT = True

3. HAVE YOU UPLOADED USING THE RIGHT BOARD MODEL AND SERIAL PORT?
After clicking the upload button you should make sure that you have the correct board model and serial port selected.
Use the dropdown menus to select ‘Arduino Uno’/’Arduino/Genuino Uno’ and ‘dev/tty.usbserial-0001 (Silicon Labs)’.

4. DO YOU NEED TO INSTALL A USB DRIVER?
If XOD is not recognising your board, you may need to install a CP210 USB driver (see page 15).

Still need help? XOD provides watch and tweak nodes which are useful for troubleshooting and debugging your programme.
Read more about them on page 27 of this guide, or take a look at XOD’s guide to debugging at www.xod.io/docs/guide/
debugging. For further help you can always contact the Biomaker team at synbio@hermes.cam.ac.uk.

Clearing the Board
Once a programme is loaded onto your board it will remain there and restart whenever you turn
on the board. Each time you upload a new programme it will write over the previous
programme. You don't need to clear the board before you upload a new programme, but if you
wish to reset your board you can do this manually by uploading a blank patch in XOD.

PAGE: 26 // 96

No-Code Programming for Biology | Beginner’s Guide

Input and Output Devices

MAKE A NEW PATCH

1 2

COPY YOUR PATCH FINDING A BUZZER NODE

There is no preinstalled node to represent the buzzer, but
several have been created by members of the XOD
community. We will use one from the library called
marcoaita/malibrary.

Drag a box around all
three nodes in the last
patch. Copy and paste
into your new patch.
This will save us some
work!

Follow the instructions
in ‘Clearing the Board’
to open and name a
new patch. (If you are
using the tutorial file,
move on to tuto201.)

Task 2: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (buzzer , button and rotary potentiometer modules)
• USB-A to micro USB cable

Great! You now understand the basic principles of using XOD,
and can programme your board to control one of the onboard
devices: the LED.

Like the button and the LED, most devices you will use can be
grouped into two general categories: inputs and outputs.

Understanding how to control different inputs and outputs,
and how to combine them together is key to making useful
devices.

In this task we will build on our knowledge to add two new
devices to our belt. The buzzer and the rotary potentiometer
(also known as a knob sensor).

3

PAGE: 27 // 96

6

ADD A BUZZER NODE

Now that the library is
installed you can
search for the
marcoaita/malibrary/
buzzer node and add it
as usual.

ADD A LIBRARY

4

Add this library by clicking on the ‘Add library’ button
(next to the ‘New patch’ button at the top of the Project
Browser) or by navigating to ‘File > Add Library...’. Type
the full name of the library, and when it appears, click on
it to install. If you get an error message asking to install
dependencies, accept this.

DELETE LED NODE

5

This time we want to
use the buzzer as an
output instead of the
LED. Click on the led
node and delete it.

7

SET BUZZER PINS:
PORT

The buzzer is
connected to port D5,
so make sure the
PORT pin is set to ‘D5’

SET BUZZER PINS:
FREQ

8

The FREQ pin sets the
frequency and pitch of
the buzzer. You can
leave this as 440, or
change it too see what
happens.

PAGE: 28 // 96

No-Code Programming for Biology | Beginner’s Guide

13

MAPPING VALUES: ADD AND CONNECT A MAP NODE

We could connect the pot output VAL (value) pin straight to the FREQ input pin. However,
this wouldn’t work well, as the VAL output ranges between 0 and 1, and frequencies
emitted by the buzzer are much higher. To get around this, we can add a map node. This
will ‘map’ your input range to a new output range, so we can change the 0-1 scale of the
potentiometer to a larger scale that the buzzer can use. Add a map node from xod/math.
Connect the pot VAL pin to the map X pin and the map output pin to the buzzer FREQ pin.

SET POT PINS

12

The potentiometer is
connected to port A0,
so set PORT to A0. Set
UPD to ‘Continuously’.

Input and Output Devices

RECONNECT THE
NODES

9 11

ADD A POT NODE

Now let’s add a second input. We can use the inbuilt
rotary potentiometer (knob) to adjust the frequency of
the buzzer sound. To represent the potentiometer we
can use the pot node from the xod/common-hardware
library. Add a pot node to the patch.

Connect the not output
pin to the buzzer EN
(enabled) pin. This will
‘enable’ the buzzer
when the button is
pressed.

UPLOAD AND TEST

Now try uploading your
programme. It should
work similarly to the
LED patch, i.e. the
buzzer turns on when
you press the button.

10

PAGE: 29 // 96

UPLOAD AND TEST

Now try uploading your
programme. Use the
button to turn the
buzzer on and off, and
the potentiometer to
set the frequency.

15

Building Complex Devices
When building biological devices, you will need to combine a variety of inputs and outputs to create a functioning programme and
device. You will often receive inputs, e.g. from an on/off button or sensor, and then use these inputs to create the desired output,
e.g. displaying a reading, sending data to a computer or moving a motor.

The button buzzer and potentiometer example used here is a very simple example, but the principle applies in more complex
systems too. Using XOD allows you to visualise this information flow from input to output, which can be helpful and sometimes
more intuitive than traditional text-based coding.

In the next lesson we’ll be getting a better understanding of what is possible in XOD by exploring a variety of useful nodes and
processes using a range of the board’s inbuilt devices.

When you are ready to explore beyond the starter kit’s capabilities, the Resources tab of the Biomaker website explores a variety
of common input and output devices which are useful for building biological devices.

SET MAP PINS

14

Smin and Smax set the source range, whilst Tmin and
Tmax set the target range. Set Smin to ‘0’ and Smax to
‘1’. Set Tmin to ‘200’ and Tmax to ‘1000’.

PAGE: 30 // 96

No-Code Programming for Biology | Beginner’s Guide

PAGE: 31 // 96

Lesson 3:
Explore XOD

Concat, Join and Format-Number Nodes

Tweak and Watch Nodes

Flip, Clock and Count Nodes

PAGE: 32 // 96

No-Code Programming for Biology | Beginner’s Guide

Explore XOD

This chapter will explore some of the most useful nodes XOD has to offer.
These nodes are used very commonly when building simple instruments, and
will give you a good base to start from when exploring more complex devices.

The sections in this chapter are split into three tasks. First, following on from
Task 2 in the previous chapter, Task 3 explores ‘Tweak and Watch Nodes’,
which are useful for simulating and troubleshooting. Second, Task 4 examines
‘Flip, Clock and Count Nodes’ which are useful for ensuring correct timing of
programmes. Finally, Task 5 looks at ‘Concat, Join and Format-Number Nodes’
which are useful for using and formatting text in XOD.

This chapter also encourages you to experiment with your use of XOD. It
provides suggestions for how to expand the tasks, and encourages you to start
thinking about the different ways in which you can achieve a desired outcome
using no-code programming.

OBJECTIVES

By the end of this chapter you should be able to:

• Explain the functions of the following XOD nodes: tweak, watch, flip-n-
times, flip-flop, clock, count, concat, join, format-number.

• Apply your knowledge of these nodes to start building simple
programmes.

• Use the XOD IDE to create and save a new project.
• Use the XOD IDE to ‘upload and debug’ programmes, allowing you to

watch and edit your programme live.
• Use two more of the inbuilt components on the Grove board: the

temperature and humidity sensor and the air pressure sensor.
• Build and compare different versions of a programme to achieve different

functions and outcomes.
• Experiment with the programmes you have built by changing parameters

and exploring new nodes
• Understand where to find more information about the basic nodes

available in XOD

Useful XOD nodes

PAGE: 33 // 96

Tweak and Watch Nodes

The tweak nodes provided in XOD are a great way to edit your
programmes whilst they are running. They are used in conjunction with
the ‘Simulate’ and ‘Upload and Debug’ functions of XOD to edit
programmes in real time, meaning that you don’t have to reload the
programme each time you want to make a small change, like altering the
value of a pin.

There are multiple tweak nodes available depending on what type of pin
you would like to change, and you will need to use the matching tweak
node for the pin type, i.e. tweak-boolean, tweak-pulse, tweak-byte, tweak-
colour, and tweak-number. There are also several tweak-string nodes
depending on the size of string you want to input, e.g. tweak-string-16
allows you you input a string of up to 16 characters, whilst tweak-string-
128 allows you to input up to 128 characters.

To use tweak nodes you will need to use the ‘Upload and Debug’ button
rather than the ‘Upload to Arduino’ button, as this opens XOD’s ‘Debugger’
function, which lets you live edit nodes. To edit a tweak node in the
Debugger, click on the node and you will now be able to make changes in
the Inspector whilst the programme is running.

TWEAK NODES

The watch node is the opposite of a tweak node. Instead of letting you
input data, it lets you view output data whilst the programme is running.
Connecting a watch node to any output pin lets you view the current
value of that pin. This is useful for being able to visualise what the
programme is doing, and where any problems are occurring.

A watch node can be connected to any output except a pulse output. To
visualise the output from a pulse pin, you can use a count node in
combination with a watch node. This is discussed further on page 41.

Like tweak nodes, watch nodes need to be used in conjunction with the
Debugger function. When the Debugger opens, the watch node will turn
green and display the last value received from the connected pin.

WATCH NODE

PAGE: 34 // 96

No-Code Programming for Biology | Beginner’s Guide

Tweak and Watch Nodes

MAKE A NEW PROJECT

1 2

ADD AND SET HYGROMETER NODE

The onboard temperature and humidity sensor is
technically known as a DHT11 hygrometer. There is a
preinstalled XOD node for this device called dht11-
hygrometer. Add this node to your patch from the xod-
dev/dht library. Set the port pin to ‘D3’

A new chapter deserves a clean slate, so let’s look at
how we start a new project. First, save your old project
(you can’t have two projects open at once). Then
navigate to ‘File > New Project...’ in the menu bar. Finally,
give your project a name, and you can get started. (If you
are using the XOD tutorial file, move on to tuto301).

Task 3: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (temperature and humidity sensor module)
• USB-A to micro USB cable

In this task we’ll look at how we can use tweak and watch
nodes to take readings from another of the inbuilt devices: the
temperature and humidity sensor.

We’ll be using a tweak-pulse node to act as a button and take
a reading whenever we press (or ‘tweak’) it, and watch nodes
to display our readings on the computer screen.

We’ll also be using the ‘Simulate/Debug’ mode in XOD, which
lets us watch and make changes while the code is running.

This is a great example of how tweak and watch nodes can be
used to quickly and easily test a patch. They are very useful
for testing and debugging patches, so you should try to get
used to using them as you build.

PAGE: 35 // 96

5

UPLOAD AND DEBUG

Click the ‘Upload and
Debug’ button
(ladybird) or use the
upload button and tick
the box labelled
‘Debug after upload’.

ADD TWEAK AND
WATCH NODES

3

CONNECT THE NODES

Connect the tweak-
pulse node to the UPD
pin and a watch node
to each of the pins Tc
(temperature ºC) and
RH (relative humidity).

Add a tweak-pulse and
two watch nodes from
the xod/debug library.

4

8

WATCH AGAIN

Look at the watch
nodes again. This time
they should display the
current temperature
and humidity.

‘TWEAK’ THE NODE

Whilst it is still running,
click on the tweak
node. In the Inspector
pane is a button next
to OUT that says
‘pulse’. Click it.

7

WATCH

6

Look at the watch
node. It won’t display a
reading yet because
we have set the UPD
pin to only update
when we tweak it.

PAGE: 36 // 96

No-Code Programming for Biology | Beginner’s Guide

Flip, Clock and Count Nodes

Like the flip nodes, the clock node is also useful for
controlling the timing of your programmes. However,
instead of giving a boolean ‘True’/’False’ output, the
clock node sends pulses at a specific time interval. This
node creates a regular ‘ticking’ of pulses, which can be
used to control your programme.

The count node is complimentary to the flip and clock
nodes, and acts as a measure of how many times a
pulse or boolean ‘True’ signal has been sent. This is
useful for keeping track of your programme and it’s
progress. The clock node is also very useful, when used
in conjunction with a watch node, to visualise the output
from a pulse pin (see Task 4, Steps 15-16 for an
example of this use).

Flip nodes are boolean logic nodes that switch (or ‘flip’)
between two states: ‘True’ and ‘False’. There are two
useful flip nodes in XOD: flip-n-times and flip-flop.

The first node, flip-n-times, will switch between ‘True’ and
‘False’ a set number of times (N). You can determine the
time spent in each state using the Ton and Toff pins, and
the whole sequence will be initiated by a pulse to the SET
pin. This node is useful for creating sequences and
patterns.

The second node, flip-flop, will switch between ‘True’ and
‘False’ states each time the toggle (TGL) pin receives a
pulse. This is a particularly useful node which can act as
a toggle or switch in many situations.

FLIP NODES

CLOCK NODE

COUNT NODE

PAGE: 37 // 96

Task 4: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (LED module)
• USB-A to micro USB cable

In this task we’ll be experimenting with flip, clock and count nodes to control the behaviour of
the inbuilt LED, making it flash.

The flip and clock nodes can be useful for modifying and timing the behaviour of nodes, whilst
the count node can be useful for monitoring these behaviours. In the context of biological
devices, these nodes are very useful for fine-tuning devices and for building larger programmes.

FLIP-N-TIMES NODE INPUTS

This node has 5 input pins: SET, RST (reset), N (number),
Ton (time on) and Toff (time off). This node defines a
sequence that will switch between true and false N
number of times. Ton and Toff define the duration of
each on and off state. A pulse to SET will start the
sequence, and a pulse to RST will reset the node.

2

NEW PATCH AND ADD
NODES

1

Open a patch (or go to
tuto401). Add these
nodes: tweak-pulse
(xod/debug), flip-n-times
(xod/core) and led (xod/
common-hardware).

PAGE: 38 // 96

No-Code Programming for Biology | Beginner’s Guide

FLIP-N-TIMES NODE OUTPUTS

3 4

CONNECT THE NODES

5

SET FLIP-N-TIMES
PINS

Set N to ‘5’, Ton and
Toff to ‘1’, and RST to
‘Never’. You can also
add a tweak-pulse
node to the RST pin to
test how it works.

Connect the tweak-
pulse node to the flip-
n-times SET pin, and
flip-n-times OUT pin to
the led LUM pin.

8

TWEAK AND WATCH

9

FLIP-FLOP NODE

Now lets try a different
flip node. Delete the
flip-n-times node and
add a flip-flop node
(xod/core).

Press the tweak-pulse
node and watch what
happens to the LED.
Each time you press,
the light should flash 5
times.

The flip-n-times node has three outputs. OUT reads the
current state of the node (true/false). Nc reads the
number of times cycled. ACT reads whether the
sequence is currently running or not. If you’d like to get a
better idea of how these outputs work, you can always
add watch nodes, to help see what’s going on.

SET LED PINS

6

As in Task 1 Steps 5-7
(p22), set the PORT pin
to ‘D4’ and the ACT pin
to ‘True’.

UPLOAD AND DEBUG

Upload and debug the
programme using the
ladybird button.

Flip, Clock and Count Nodes

7

PAGE: 39 // 96

11

TEST THE PATCH

Upload the program
and pulse the tweak-
pulse node. The LED
should switch between
on and off each time
you press it.

The flip-flop node has 3 input pins: SET, RST and TGL
(toggle). TGL switches the node between true and false
each time it receives a pulse. Connect the tweak-pulse
node to TGL. Set SET to ‘On Boot’ and RST to ‘Never’. The
MEM (memory) output pin reads out the latest state of
the node. Connect this to the LUM pin of the led.

CONNECT AND SET FLIP-FLOP PINS

10

14

RECONNECT

Delete the tweak-pulse
node and connect the
clock node in its place
by linking the TICK pin
to the TGL pin.

SET CLOCK PINS

Set EN (enabled) to
‘True’ and RST to
‘Never’. IVAL
determines how often
the clock ticks (in
secs). Set this to ‘1’.

13

CLOCK NODE

12

The flip-flop node can
also flash the LED
when combined with a
clock node. Add a
clock node (xod/core)
to the patch.

PAGE: 40 // 96

No-Code Programming for Biology | Beginner’s Guide

17

SET COUNT PINS

Set RST to ‘Never’.
STEP determines how
much the count
increases by with each
pulse. Set this to ‘1’.

15

COUNT NODE

16

CONNECT COUNT NODE

Connect the led DONE pin to the count INC (increase)
pin. The DONE pin pulses each time the LED turns on or
off, and the INC pin increases the count each time it is
pulsed. Connect the count output pin to a watch node so
we can see the count. This will let us see on the screen
each time the LED pulses.

We’ll also add a count
node to this patch so
that we can monitor
the number of times
the LED flashes. Add a
count node (xod/core).

19

EXPERIMENT!

As with all programming, there is always more than one way to achieve a similar outcome,
and different methods may suit different applications. Here we have tested two different
ways of making the LED flash, but there are plenty of other ways you can experiment with.
Why not try using a square-wave node to make the LED flash? See if you can work it out
using the help pane and XOD website. Or you can just try playing around with the nodes
you’ve already tried. Try experimenting with different timings and patterns of flashing.

18

TEST THE PATCH

Upload the program.
Watch the LED and
count. The LED should
flash and the count
will increase with each
flash.

Flip, Clock and Count Nodes

PAGE: 41 // 96

Watching Pulse Pins:
Combining Count and Watch Nodes
Combining count and watch nodes is a really useful way to visualise the output of a pulse pin.
Unfortunately, a pulse output can not be directly connected to a watch node in XOD, as the data
types (pulse and string) clash.

We can get around this by connecting a pulse output to the INC pin of a count node, and then
connecting a watch node to the count output pin (as we did in Steps 15-16 of this Task). In this
setup, the count node increases with each pulse sent, and we can visualise this in the debugger
with the watch node.

Discovering New Nodes
The last step of this task encourages you to try out a new node: the square-wave node. We have not provided specific information
about this node here, but it is useful to practice discovering new nodes for yourself.

To work out how a new node works, it is best to start with understanding what its pins do. In most cases, the Quick Help pane will
give a brief explanation of the node and what each of its pins does. This is often enough information to work out the node’s
function and how to use it.

You can also find additional documentation about each node on the XOD website. You can access this by clicking on the
document button next to the node name in the Inspector pane. Or by visiting www.xod.io/libs and using the search function.

When the documentation for a node is not sufficient, you can usually still work out its function by adding tweak nodes to its inputs
and watch nodes to it’s outputs. Then simulate or ‘Upload and Debug’ your patch. Try editing each of the inputs in turn and watch
how this affects the outputs. In this way you can often determine a node’s function experimentally.

If you are still having trouble, you can always find help on the XOD forum at www.forum.xod.io.

PAGE: 42 // 96

No-Code Programming for Biology | Beginner’s Guide

Concat, Join and
Format-Number Nodes

As the name suggests, the format-number node allows
you to format number outputs. With this node, you can
determine the amount of decimal places displayed,
which can be very useful if you would like to display a
sensor reading, for example. This node also converts the
format of the input from a number to a string.

Other nodes useful for formatting numbers include
number-split-to-digit, from the library gst/number-split-to-
digit), dec-to-2digits and dec-to-4digits, both from the
library cesars/utils.

FORMAT-NUMBER
NODE

The join node is similar to the concat node, but has the
additional feature of allowing you to chose how the
different string inputs are joined together. The delimiter
(D) pin determines what character is used to separate
inputs, e.g. a space, comma or colon etc. This is
particularly useful for storing data readings, as you can
separate values with a comma or tab to create comma-
separated (.csv) or tab-separated (.tsv) files. Like concat,
the join node is variadic, and can take as many inputs as
necessary.

JOIN NODE

The concat node allows you to join two or more sets of
strings together. This is useful for combining different
inputs for display or storage. E.g. combining a number
reading from a sensor with the symbol for it’s units.
Concat will join the inputs directly, so if you require a
space between them you will need to input this in your
string.

Concat is a variadic node. Meaning you can change the
number of inputs. You can do this by dragging out the
white tab on the right side of the node.

CONCAT NODE

PAGE: 43 // 96

Task 5: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (air pressure sensor module)
• USB-A to micro USB cable

NEW PATCH AND ADD LIBRARY

1

Open a new patch (or move on to tuto501). To work with
the air pressure sensor (also known as a barometer) you
will need to install the library wayland/bmp280-
barometer.

In this task we’ll look at using concat, join and format-number nodes. These nodes are especially
useful when working with data and displays.

The concat and join nodes are both used to combine information in the form of strings (text).
The format-number node is used to set the number of decimal points displayed in a number. In
combination, these nodes are useful for formatting the outputs of sensor modules, both for
data storage, and for display on a screen.

2

ADD BAROMETER-
THERMOMETER NODE

Add a barometer-
thermometer node
(wayland/bmp280-
barometer) to the
patch.

PAGE: 44 // 96

No-Code Programming for Biology | Beginner’s Guide

8

ADD WATCH NODES

Add two watch nodes
(xod/debug). Link one
to the output of the
concat node, and one
to the output of the
join node.

SET FORMAT-
NUMBER NODE

Link the barometer-
thermometer PRESS
pin to the format-
number NUM (number)
pin. Set DIG (digits) to
‘0’ decimal places.

6

ADD AND SET JOIN NODE

7

Add a join node (xod/core). This is similar to concat, but
has a D (delimiter) pin. D determines how inputs are
joined (e.g. via a space or colon). It’s automatically set to
be a space. Leave it as this. Connect the first input (S1)
to the format-number STR (string) pin. Set the second
input to ‘Pa’ (pascals, the unit of air pressure).

Add a concat node (xod/core). This node combines
multiple strings from the input pins into a single output.
This node is ‘variadic’ meaning you can expand the node
by pulling on the tab on the right, letting you increase the
number of inputs. Connect the first input to the TEMP
pin. Set the second input to ‘oC’ (degrees centigrade).

ADD AND SET CONCAT NODE

4

ADD FORMAT-
NUMBER NODE

Add a format-number
node (xod/core). This
node lets you format
the number of decimal
places in a number.

5

SET BAROMETER-
THERMOMETER NODE

Set UPD to
‘Continuously’. Leave
other inputs as they
are. Outputs are
temperature (TEMP)
and pressure (PRESS).

3

Concat, Join and
Format-Number Nodes

PAGE: 45 // 96

9

TEST THE PATCH

Upload and debug.
Look at the watch
nodes. You may need
to expand the watch
nodes by pulling on the
bottom right corner.

10

EXPERIMENT!

Play around with the nodes in your patch to see how you
can format the sensor output in different ways. Try
exploring other nodes available for formatting numbers
in XOD. For example, number-split-to-digit (from gst/
number-split-to-digit), dec-to-2digits or dec-to-4digits
(both from cesars/utils).

More Information on Basic Nodes
This section has covered a number of basic nodes that we have found useful in building simple biological devices. However, there
are plenty of other useful nodes out there, both pre-installed in XOD, and created by XOD users such as yourself.

In the rest of this guide we will continue to explore useful nodes and techniques in XOD, but if you’d like to explore for yourself,
here are a few useful resources for getting to grips with XOD:

XOD TUTORIAL
Each time you open XOD it will offer you the option of following its inbuilt tutorial. Working through this is a great way to learn
more about what XOD can do. It is also available online at www.xod.io/docs/tutorial.

XOD GUIDE
The XOD user guide provides advice on some more complex concepts, as well as some case studies to work through. It is
available online at www.xod.io/docs/guide.

XOD CORE LIBRARY
Taking a look through the nodes in the XOD core library will help you understand the most basic nodes available and what they
do. Find xod/core in the Project Browser.

PAGE: 46 // 96

No-Code Programming for Biology | Beginner’s Guide

PAGE: 47 // 96

Lesson 4:
Building
Devices

Sequences and Loops

Creating New Nodes

Logic Programmes

Using Buses

PAGE: 48 // 96

No-Code Programming for Biology | Beginner’s Guide

Building Devices

So far in this guide we have explored how to use a few useful nodes to perform
some simple tasks, like watching the readings from a sensor, or flashing an
LED. However, we often want to perform more complex tasks, like reading and
storing data, displaying information on a screen, or creating complex logical
programmes.

This lesson will build on what we have learned already, and explore some more
complex concepts in XOD. This will help you to build larger, more complex
programmes and devices in a neat and efficient way.

The first two tasks in this lesson, Task 6 and Task 7 will cover how to make
new nodes and how to use buses respectively. These skills are useful for
creating tidy, and compartmentalised programmes. Task 8 and Task 9 will then
explore how we can use these skills to build logic-based programmes, and how
we can introduce sequences and loops, which are useful for biological devices.

OBJECTIVES

By the end of this chapter you should be able to:

• Describe the function of XOD terminal nodes and how they are used.
• Create new nodes in XOD by combining existing and terminal nodes.
• Test and use the new nodes you have created in programmes.
• Describe the function of buses, their advantages, and how to use them.
• Use maths and logic nodes to create logic programmes in XOD.
• Recall at least two different methods for creating sequences in XOD.
• Implement programming loops in XOD using the defer node.
• Use the remaining components on the Grove board: the sound sensor,

light sensor, 3-axis acceleration sensor and the OLED screen.
• Programme the OLED screen to display graphics such as text and shapes.
• Recall how to document your nodes correctly, including describing the

node and it’s pins and adding comment boxes.
• Recall how to publish nodes, or collections of patches a library.

XOD patch from Task 9: Sequences and Loops

PAGE: 49 // 96

XOD terminal nodes

If we want to build programmes capable of more complex functions than producing a simple
input and output, we will need to add a few more skills to our repertoire. More complex
programmes often require more nodes, and the multitude of nodes and links can quickly
become confusing. The good news is that XOD provides several ways of reducing the
complexity of your patches and keeping your programmes neat and tidy. This is good practice
so that you can keep track of what you’re doing, and also for others who may need to
understand your programme.

One way simplify a complex programme is to make your own nodes. This means that you can
encapsulate specific functions within your programme into neat little packages that can be
easily connected to each other. It also has the advantage that they can easily be shared with the
wider XOD community, making useful new nodes available to everyone.

Creating your own nodes is much easier than it sounds. It is essentially the same as creating
any other patch, but we need to add special nodes called ‘terminals’ to allow our new node to
communicate with other nodes.

There are two types of terminals: inputs and outputs. Like tweak nodes, they come in different
types based on their data type. The nodes above from left-to-right, top-to-bottom are: input-
boolean, input-byte, input-number, input-port, input-pulse, input-string, input-t1 (custom input
type), output-boolean, output-byte, output-number, output-port, output-pulse, output-string, output-
t1 (custom input type).

In the next task we’ll explore in more detail how to use these terminals to create your own
nodes, using the inbuilt OLED screen on your board as an example.

The XOD website also provides some excellent information about how to make your own nodes
at www.xod.io/docs/guide/nodes-for-xod-in-xod.

Creating New Nodes

Why Create New Nodes?

PAGE: 50 // 96

No-Code Programming for Biology | Beginner’s Guide

Creating New Nodes

3

ADD NODES

From the wayland/ssd1306-oled-i2c library, add the
following nodes to your patch: ssd1306-oled-i2c-device,
rotate-display, clear-display, draw-text, send-buffer-to-
display.

Task 6: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (sound sensor and OLED screen modules)
• USB-A to micro USB cable

In this task we’ll learn how to make a new node that will allow
us to write text on our OLED screen.

Instructing the OLED screen to display text is a slightly more
complex task than we have done so far, and involves several
nodes to represent the screen rather than one.

In this task we’ll be combining these multiple nodes into one,
which we will then use to display the readings from our
onboard sound sensor.

Creating nodes like this is useful as it helps to simplify the
patch, and we can also save new nodes for later use in
different programmes.

NEW PROJECT AND
NEW PATCH

Save your project and
create a new one (or
move on to tuto601).
Add a new patch to the
project, and name it
‘write-text-to-oled’.

1

ADD LIBRARY

2

To work with the OLED
screen you will need to
install the library
wayland/ssd1306-oled-
i2c.

PAGE: 51 // 96

D

E

A

B

C

D

E

SSD1306-OLED-I2C-DEVICE
This node represents the OLED device.
WIDTH and HEIGHT set the dimensions of
the screen in pixels. Leave these as ‘128’
and ‘64’. ADDRESS identifies the port, leave
this as ‘3Ch’. RESET represents the screen’s
reset pin. Leave this as ‘-1’ as our board
does not have a dedicated screen reset pin.
The output of this node, DEV (device) needs
to be connected to each of the other nodes’
DEV input pins.

ROTATE-DISPLAY
You can change the screen orientation using
this node. Set ROT to ‘02h’, which is correct
for our screen. Set UPD to ‘On Boot’ so that
the screen updates when the programme
starts. This node starts a sequence that
allows us to display items on the screen. In
this sequence, each DONE pin connects to
the next UPD pin. Connect the rotate-screen
DONE pin to the clear-display UPD pin.

CLEAR-DISPLAY
This node should be used before displaying
anything on the screen. Connect the DONE
pin to the draw-text UPD pin.

DRAW-TEXT
This node inputs the text we want displayed.
X and Y determine the position of the text by
coordinates. Leave these as ‘0’, ‘0’. TEXT is
where you enter your text. Use ‘Hello!’ as a
test. SIZE determines the size of the text.
Leave this as ‘02h’. COLOUR determines the
colour of the text (black or white). Set this to
‘1’. WRAP determines whether the text is
wrapped within the boundaries of the
screen. Leave this as ‘True”. Connect the
DONE pin to the send-buffer-to-display UPD
pin.

SEND-BUFFER-TO-DISPLAY
So far we have written information to the
microchip’s memory, but we haven’t actually
sent it to the screen. This node is the final
step that sends this data. It needs to be
used whenever you want to display
something on the screen.

4

Setting up the OLED screen requires several connections
between these nodes, so let’s take it step by step.

SETTING UP THE OLED SCREEN

AB

C

PAGE: 52 // 96

No-Code Programming for Biology | Beginner’s Guide

7

11

TEST THE PATCH

Upload the patch, and
you should see the
readings from the
sound sensor
displayed on your
screen.

ADD AN INPUT-
STRING NODE

8

MAKE A NEW PATCH

Now we’ve made our
new node, let’s try
adding it to another
patch. Add a new
patch and name it
‘sound-sensor’.

Add an input-string
node (xod/patch-
nodes) and connect it
to draw-text TEXT.

5

TEST THE PATCH

6

ADD A CLOCK NODE

Add a clock node (xod/
core) and link the TICK
pin to rotate-display
UPD. This will make
your screen update
once a second.

Upload the patch and
watch your OLED
screen. White text
should appear in the
top left-hand corner of
the screen.

ADD WRITE-TEXT-TO-
OLED NODE

9

To add your new node
to a patch, simply
search for it as usual,
or drag the patch from
the Project Browser
into the patch.

ADD AND SET ANALOG-SENSOR NODE

10

Now that we have a node that will write text to the
screen, let’s use it to display a sensor reading. For many
common analog sensors (including the inbuilt sound
sensor) you can use the simple XOD analog-sensor node
(xod/common-hardware). Add this node, set PORT to ‘A2’,
and connect VAL to the write-text-to-oled node.

Creating New Nodes

PAGE: 53 // 96

B

A

B

C

D

SECOND DRAW-TEXT NODE
Add a second draw-text node below the first.
We will use this to draw a second line of
text. Set the Y pin of this node to 20. This
will move the text down by 20 pixels,
creating a new line.

RECONNECT
Delete the link between the first draw-text
node and send-buffer-to-display. Link the first
draw-text DONE pin to the second draw-text
UPD pin. Link the second draw-text DONE pin
to the send-buffer-to-display UPD pin.
Connect ssd1306-oled-i2c-device DEV to the
second draw-text DEV pin.

LABEL INPUT-STRING NODES
Add a second input-string node and connect
it to the TEXT pin of the second draw-text
node. We will now have more than one input
into our node, so we need give them labels,
to avoid confusion. Click on each input-string
node in turn. Use the Inspector pane to
name your nodes by typing in the ‘Label’ text
box. Name your nodes ‘LINE 1’ and ‘LINE 2’
respectively.

ADD OUTPUT-PULSE NODE
Add an output-pulse node to the patch, and
connect it to the send-buffer-to-display DONE
pin. Use the Inspector to label this node
‘DONE’.

12

Writing a line of text directly to the OLED screen is great,
but what if we need a more complicated node? For
example, one that takes multiple lines of text, or one that
sends a signal once the text has been uploaded?

Lets go back to our write-text-to-display node. You can do
this by opening the patch in the Project Browser, or by
double clicking on the node in your patch.

Make the changes listed below to expand the capabilities
of your node.

A

B

B

C

D

C

MODIFY YOUR NODE

PAGE: 54 // 96

No-Code Programming for Biology | Beginner’s Guide

15

TEST THE PATCH

Upload and debug.
You should see two
lines of text on your
screen, and the watch
node will count when
the screen updates.

MODIFYING YOUR PATCH

13 14

ADD COUNT AND WATCH NODES

Add a count node (xod/core) and watch node (xod/
debug). Link the write-text-to-oled DONE pin to the count
INC pin, and the watch node to the count output pin. A
watch node cannot be directly linked to a pulse pin, so
this is a useful trick if you want the watch the output
from a pulse pin.

Return to your ‘sound-sensor’ patch using the tab at the
top, or the Project Browser. You will notice that the write-
text-to-oled node has changed. It now has two inputs and
an output. Delete the link between VAL and LINE 1 and
link VAL to LINE 2 instead. Use the Inspector to set LINE
1 to ‘Volume:’.

16

EXPERIMENT!

The OLED screen is a really useful device, and can be used in a multitude of different ways.
Try playing around with your new node by adding another line, or changing the position and
size of the text. Or you can try using the OLED to display data from a different sensor. You
can also experiment with some of the other nodes in the wayland/ssd1306-oled-i2c library.
This library contains lots of useful nodes for drawing different objects on the screen, as
well as several example patches to show you how they work.

Creating New Nodes

PAGE: 55 // 96

Documenting Nodes
When publishing your work it is good practice to make sure that your nodes are well documented. This helps to
remind yourself what you’ve done, and allows others to get an idea of how the node can be used.

Before you publish you library, make sure that you have described the node and each of it’s pins. To write a
description of the node, click a blank space on the patch and a ‘Description’ box will appear in the Inspector pane.
Write a brief description about what the node does and what its used for, e.g. “This node writes two lines of text to
the ssd1306 OLED screen”.

To write a description of the pins, click on an input or output node and you will see the ‘Description’ box at the
bottom of the Inspector pane. Write a brief description of the pin, e.g. “String to display on the first line of text. Text
will appear at coordinates 0:0”.

You can also provide more information about how your node works by adding comments to the patch. To do this,
navigate to ‘Edit > Insert Comment’ in the menu bar. You can find out more about documenting nodes at www.xod/
docs/guide/documenting-nodes.

Sharing Nodes and Publishing Libraries
One of the great advantages of XOD is the growing community of contributors, who are
generating an ever-expanding range of nodes and libraries for other to use. When you create
new nodes that you think might be useful for others, you can easily share these with the XOD
community by publishing them as a library.

There are no strict rules about what constitutes a library, so even if you only create one node,
this can still be a library. Publishing allows others to use your nodes, but is also useful for
reusing your own work, as you can download your own libraries for use in all of your projects.

Creating a library is essentially just making a project with a patch for each node. You can also
include patches with example of how to use the nodes, as there are in the wayland-ssd1306-
oled-i2c library. Once you’ve created your project, you need to set the metadata. Do this by
navigating to ‘Edit > Project Preferences’ in the menu bar. Here you should enter a name a
description for you library, as well as a licence type (e.g. GNU, CC-BY etc. more info. at
www.opensource.org/licenses).

To publish your library, go to ‘File > Publish Library’ in the menu, click ‘Publish’, and you’re done!
You can find out more about publishing libraries at www.xod.io/docs/guide/creating-libraries.

PAGE: 56 // 96

No-Code Programming for Biology | Beginner’s Guide

Using Buses

3

CLONE WRITE-TEXT-TO-OLED PATCH

For this task we’ll be using the OLED display again, but in
a slightly different way. So that we don’t have to start
again, we can clone the write-text-to-oled patch by right
clicking on the patch in the Project Browser and
selecting ‘Clone’. Rename the new patch from ‘write-text-
to-oled-copy’ to ‘write-dot-to-oled’.

Task 7: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (3-axis acceleration and OLED screen modules)
• USB-A to micro USB cable

In this task we’ll look at another way to simplify our patches:
using buses. Buses are a way to link pins ‘invisibly’ so that you
don’t have too many link intersections that make the data flow
confusing.

Buses are a little like input and output nodes. They come in
two types, to-bus and from-bus, and they automatically take
the data type of the pin they’re connected to.

The to-bus node is used like an output node and sends
information from an output to a bus. The from-bus node acts
like an input node and retrieves information from the bus of
the same name.

We’ll practice using buses by displaying the output of our 3-
axis acceleration sensor (also known as an accelerometer or
tilt sensor) on our OLED screen.

MAKE A NEW PATCH

Add a new patch to the
project, and name it
‘tilt-sensor’ (or move
on to tuto701).

1

ADD LIBRARY

2

To work with the
accelerometer you will
need to install the
library wayland/lis3dh-
accelerometer.

PAGE: 57 // 96

D

E

A

B

C

D

E

ADD AND SET DRAW-CIRCLE NODE
Delete both draw-text nodes along with their
associated input nodes. Add a draw-circle
node. Set R (radius) to ‘3’ to make a circle 3
pixels wide. Leave colour as ‘1’. Set FILL to
‘True’ so that we get a solid circle rather than
an outline.

RECONNECT
Link the clear-display DONE pin to the draw-
circle UPD pin. Link the draw-circle DONE pin
to the send-buffer-to-display UPD pin.

ADD INPUT-NUMBER NODES
Add two input-number nodes and connect
them to the X and Y pins. Use the inspector
to label these ‘X’ and ‘Y’.

REPLACE LINKS WITH BUSES
Although the OLED patch worked, it was very
messy, with links criss-crossing, and it would
be easy to miss a connection. Let’s improve
this by replacing these links with a bus. First,
delete all of the orange links between the
ssd1306-oled-i2c-device and the other
nodes. Add a to-bus node (xod/patch-nodes)
and link it to the output of ssd1306-oled-i2c-
device. Use the inspector to label this node
‘DEV’. Add a from-bus node (xod/patch-
nodes). Make sure this from-bus node is also
labelled ‘DEV’ as buses can only
communicate if they have the same name.
Repeat this process, or copy and paste the
DEV from-bus node until you have four in
total. Connect these to each of the DEV input
pins on the nodes rotate-display, clear-
display, draw-circle and send-buffer-to-
display.

CHANGE CLOCK TIMING
Set the clock IVAL pin to 0.1, so that it
updates more frequently.

4

This time we would like to draw a small circle on the
screen instead of text. The circle will move around the
screen as you tilt the board.

Follow the instructions below to modify the write-dot-to-
oled patch for this new purpose.

A

B

B

C

MODIFY YOUR NODE

PAGE: 58 // 96

No-Code Programming for Biology | Beginner’s Guide

TEST THE NODE

5 6

ADD AN ACCELEROMETER NODE

Add an accelerometer node (wayland/lis3dh-
accelerometer). We want to use the output from the
accelerometer to set the location of the dot on the
screen. You could connect the accelerometer X and Y
pins directly to the write-dot-to-oled X and Y pins, but it
wouldn’t work as the nodes’ ranges don’t match up.

9

CONNECT MAP NODE

10

REPEAT MAP NODE

Add a second map
node add link it to the
Y output. Set Smin to ‘-
10’, Smax to ‘10’, Tmin
to ‘128’ (the screen
width) and Tmax to ‘0’.

Link the accelerometer
X and map X pins. The
node now converts the
accelerometer X range
to values within the
height of the screen.

Test the node by returning to your tilt-sensor patch,
adding a ‘write-dot-to-oled’ node, and connecting two
tweak-number nodes to the X and Y inputs. Upload and
debug. Click on the tweak-number nodes and use the
Inspector to change their values. Watch how this shifts
the dot around the screen.

ADD A MAP NODE

7

To fix this, add a map
node (xod/math). This
node lets us map the
accelerometer output
range to the write-dot-
to-oled input range.

SET MAP NODE

8

Set Smin to ‘-10’ and
Smax to ‘10’ (the range
of the accelerometer).
Set Tmin to ‘64’ (the
screen height) and
Tmax to ‘0’.

Using Buses

PAGE: 59 // 96

11

ADD ROUND NODES

Add two round nodes
(xod/math). Connect
them to the outputs of
the map nodes. This
will round the outputs
to whole numbers.

EXPERIMENT!

Experiment with the nodes in this patch. Can you get
some text to appear when the dot lands in the middle? It
is also worth exploring the wayland/lis3dh-
accelerometer library, as it has useful nodes and plenty
of demonstrations. For example, the click-detector node
above, which detects taps of the sensor.

14

CONNECT ACCELEROMETER TO OLED

Delete the tweak nodes from the write-dot-to-oled node.
Connect the round output linked to the accelerometer X
output to the Y input pin, and the round output linked to
the accelerometer Y output to the X pin. This seems
counter-intuitive, but is due to the settings of the
different nodes.

12

TEST THE PATCH

13

Upload the patch. Tilt
your board left and
right, backwards and
forwards, and watch
the little dot on the
screen move!

PAGE: 60 // 96

No-Code Programming for Biology | Beginner’s Guide

Logic Programmes

Task 8: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (light sensor and OLED screen modules)
• USB-A to micro USB cable

In this task we’ll take some of the skills we’ve learned so far in
this lesson and use them to create a more complex
programme that uses logic to instruct the board what to do.

We’ll be using the light sensor and OLED screen modules of
the board to create a simple light sensing device.

Whilst this is still a fairly simple device, it contains a lot of the
basic functions that you can use for your own instruments: an
input in the form of a sensor; a logic programme that instructs
the board what to do based on the value of this input; and an
output that changes something, in this case the text displayed
on a screen.

MAKE A NEW PATCH

Add a new patch to the
project, and name it
‘light-sensor’ (or move
on to tuto801).

1 3

ADD NODES

Add the following nodes to the light-sensor patch:
analog-read-no-port-check (wayland/analog-read-no-port-
check), watch x2, tweak-number x2 (xod/debug), multiply,
less, greater, nor, if-else x3, concat (xod/core), input-port,
input-pulse, output-string, to-bus x2, from-bus x5 (xod/
patch-nodes).

ADD LIBRARY

2

To work with the light
sensor you will need to
install the library
wayland/analog-read-
no-port-check.

PAGE: 61 // 96

D

E

4

A

B

C

A

B

C

D

E

ANALOG-READ-NO-PORT-CHECK
This node represents the light sensor.
Connect the VAL output to the first input of
the multiply node.

MULTIPLY
We will use the multiply node to scale up the
output of the sensor node. The node will
multiply the input values, so let’s set the
second input ‘100’. Connect one of the to-
bus nodes to the multiply output and label it
‘VAL’.

LESS
This node takes the first input value and
compares it to the second input value. It will
return ‘True’ if the first value is less than the
second, and ‘False’ if not. Connect one of the
from-bus nodes to the first input and label it
‘VAL’ so it receives the value output by the
multiply node. Connect one of the tweak-
number nodes to the second input so you
can tweak the lower limit later.

GREATER
The greater node is very similar to the less
node, but it will return ‘True’ only when the
first input is greater than the second input.
Repeat the same connections for the greater
node. Connect a from-bus node to the first
input and label it ‘VAL’. Then connect a
tweak-number node to the second input to
let you tweak the upper limit.

NOR
The nor node will only return ‘True’ if both
inputs read ‘False’. We want a third state
that triggers if the light intensity is neither
less than the lower limit, nor greater than the
upper limit, and we will use the nor node to
achieve this. Connect the output of less
node to the first nor input, and the output of
the greater node to the second nor input.

We want our node to return one of three readings
depending on the light intensity: ‘too dim’, ‘all ok’ or ‘too
bright’. We’ll use a combination of simple logic functions
to programme this capability.

Follow the instructions below to set up your patch.

SET UP YOUR LIGHT-SENSOR NODE (PART 1)

PAGE: 62 // 96

No-Code Programming for Biology | Beginner’s Guide

Logic Programmes

D

E

5

A

B

C

A

B

C

D

E

IF-ELSE
The if-else node will output one value (T) if the condition
(COND) it receives is true, and another (F) if it is False. We
want to set up the three if-else nodes so that each of the
above conditions (less than the lower limit, greater than the
upper limit, or neither) returns as different line of text.

Set the T pin of the first if-else node to ‘too dim’ and
connect the COND pin to the less output. Set the T pin of
the second if-else node to ‘all ok’ and connect the COND pin
to the nor output. Set the T pin of the third if-else node to
‘too bright’ and connect the COND pin to the greater output.
We will leave the F pins blank, so that nothing is returned
when the conditions are false.

CONCAT
Use the tab on the variadic concat node to expand it to
three inputs. Connect all three of the if-else outputs to the
concat inputs. This will combine all three responses into
one string. Due to the logic conditions, only one string will
returned at a time and each of the other two nodes will
return a blank value. Connect the second to-bus node to the
concat output and label it ‘STATE’.

INPUT NODES
Connect the input-port node to the PORT pin of the analog-
read-no-port-check node and label it ‘PORT’. Connect the
input-pulse pin to the UPD pin of the analog-read-no-port-
check node and label it ‘UPD’.

OUTPUT NODE
Connect a from-bus node to the output-string node and
label both nodes ‘STATE’. This may seem redundant, but
will help us with our next step.

WATCH NODES
Connect a from-bus node to each watch node. Label one
‘VAL’ and one ‘STATE’. This will link one to the 100x
multiplied output of the sensor node so that you can see
the sensor reading, and one to the final output of the concat
node so that you can see the current state. By adding
buses here we can put the two watch nodes together and
easily view the outputs side by side, rather than having to
move around the screen.

You should now have completed the first half of the patch.

Continue setting up the second half by following the instructions below.

SET UP YOUR LIGHT-SENSOR NODE (PART 2)

PAGE: 63 // 96

ADD AND CONNECT
NODES

9

Add your light-sensor
node and a write-text-
to-oled node to the
patch. Set LINE1 to
‘Light:’ and connect
STATE to LINE2.

EXPERIMENT!

11

Explore some of the
other logic nodes from
the xod/core library. Or
try using pulse-on-true
with if-else to control a
programme’s timing.

UPLOAD AND DEBUG

Upload and debug the
light-sensor patch
using the ladybird
button.

SET RANGE

7

Use the tweak-number
nodes to find a range
that works. We have
used 10-60 but this
may need adjusting to
your environment.

MAKE A NEW PATCH

Add a new patch to the
project, and name it
‘light-sensor-display’
(or move on to
tuto810).

8

TEST THE PATCH

10

Upload the patch.
Change the light
intensity by moving or
covering the board.
Watch how this affects
the screen output.

6

PAGE: 64 // 96

No-Code Programming for Biology | Beginner’s Guide

Sequences and Loops

Task 9: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (buzzer module)
• USB-A to micro USB cable

In this final task we’ll explore one of the most useful skills for
building biological devices: creating sequences and loops.

By programming a sequence of events, using logic and
introducing loops we can make devices that are useful for
tasks such as automation, monitoring and response to
environmental conditions.

This task will introduce these skills by using the buzzer to play
a simple tune ‘hot cross buns’ (an English nursery rhyme).

This will involve creating two separate sequences and using
logic nodes to instruct the programme when to play them. We
will use two different methods to make the sequences, and
will create a separate node for each one.

MAKE THREE NEW
PATCHES

Add three new patches
to the project, and
name them ‘bar124’,
‘bar3’ and ‘play-tune’
(or move on to
tuto901).

1 3

ADD NODES TO BAR3

Add the following nodes to the bar3 patch: buzzer-timed
(marcoaita/malibrary), clock, count x2, or, defer, if-else,
equal, pulse-on-true (xod/core), between x2 (e/
comparison - you will need to install this library) input-
pulse x2, input-boolean, output-pulse, output-number, to-
bus x3, from-bus x5 (xod/patch-nodes).

ADD NODES TO
BAR124

2

Add: buzzer-timed x3
(marcoaita/malibrary),
delay, count (xod/core),
input-pulse x2, output-
pulse, output-number
(xod/patch-nodes).

PAGE: 65 // 96

4

A

A

A

B

C
A

B

C

BUZZER-TIMED NODES
Set each of the buzzer-timed nodes to play a
different note by changing their frequency
pins. Set one to ‘246.94’ Hz and change its
name to ‘B’ using the label field in the
Inspector. Set one to ‘220’ Hz and name it
‘A’. Set one to ‘196’ Hz and name it ‘G’. Set
PORT to ‘D5’ and EN to ‘False’ on all three.
Set T (time) to ‘1’ on B and A and to ‘2’ on G.
This will produce a longer final note.
Connect the DONE pin of B to the SET pin of
A and the DONE pin of A to the SET pin of G.
Add the output-pulse node to the DONE pin
of G and name it ‘DONE’, so that we can see
when the sequence is complete.

COUNT
Connect the DONE pin of G to the INC pin of
count so that the count increases each time
the sequence is complete. Add the output-
number node to the output pin and name it
‘RND’ (round), so that we can see the
number of times the sequence has played.
Add an input-pulse node to the RST (reset)
pin and name it ‘RST’. We will use this to
reset the count when the tune finishes.

DELAY
We will use the delay node to introduce a
half second gap between each bar. Set T
(time) to 0.5, and connect the DONE pin of
delay to the SET pin of B. Add an input-pulse
node to the SET pin of delay and name it
‘SET’. We will use this input to initiate the
sequence.

In this patch we will create the sequence of notes (B, A, G)
that make up bars 1, 2 and 4 of the tune.

To test this node, you can add a tweak-pulse node to the
SET pin of delay. Upload and debug, then use the tweak-
pulse node to initiate the sequence.

This patch uses a series of nodes with connected SET
and DONE pins to create a sequence, similar to how we
created our write-text-to-oled node in Task 6 (p49). The
patch for bar 3 will create a sequence in a slightly
different way.

SET UP YOUR BAR124 NODE

PAGE: 66 // 96

No-Code Programming for Biology | Beginner’s Guide

Sequences and Loops

D

E

5

A

B

C

A

B

C

D

E

BUZZER-TIMED
Set the port to ‘D5’ and EN to ‘False’. Set T (time) to 0.5.
Add a from-bus node to the FREQ pin and name it ‘FREQ’.
This will allow our logic nodes to set the frequency of the
note depending on the beat number.

COUNT
Connect the buzzer-timed DONE pin to the count INC pin, so
the the count increases each time the buzzer sounds. Add
an input-pulse node to the RST pin and name it ‘RST-BEAT’.
We will use this to reset the count at the end.

DEFER
The defer node is the key to creating loops in XOD. In this
case, we are creating a loop that reads out the beat
number, and changes the frequency of the note and
decides whether to repeat based on this. Connect the count
output pin to the defer input pin to inform XOD of this loop.
Add a to-bus node to the output pin and name it ‘COUNT’.
This will feed into our logic nodes.

CLOCK
We want the buzzer to sound a short note repeatedly. To do
this, connect the clock node to the buzzer-timed SET pin.
Set RST to ‘On Boot’ and set the IVAL (interval) pin to 0.51,
which is slightly longer than the buzzer sounding time.

OR
Using the clock node we’e made the buzzer sound regularly,
but we don’t want it to sound all the time. We need to add
conditions specifying when the clock is enabled. The
buzzer should sound EITHER at the start of the third bar,
OR when the sequence has started but not yet finished, i.e.
after beats 1-7, but not after beat 8. Connect the or node to
the EN pin of the clock node. Add an input-boolean node to
one of the input pins and name it ‘SET’. We will use this to
initiate the sequence at the start of bar 3. Add a from-bus
node to the other input pin and name it ‘BEAT’. This will
continue the sequence after beats 1-7.

In this patch we will create the sequence of notes (G x 4, A x 4) that
makes up bar 3 of the tune.

We will do this in a slightly different way to the bar134 node. First we will
set up a sequence to time the notes, then we will use logic nodes to
control the frequency and number of the notes. This will create a loop
that feeds information coming out of the programme back into the
sequence. We will use buses to connect the two halves of this node.

SET UP YOUR BAR3 NODE (PART 1)

PAGE: 67 // 96

SET UP YOUR BAR3 NODE (PART 2)

Follow the instructions below to complete the second half of the loop.

Your bar3 node is now complete. To test this node you can add a flip-flop and tweak-pulse
node to one of the or inputs. Pulse this twice to start and stop the sequence.

6

A

B

C

FREQUENCY
This part switches the note between G and A depending on the count
number. Use one of the between nodes. Add a from-bus node to the X pin and
name it ‘COUNT’ so that it receives the count number from the end of our
sequence. Set MIN to ‘0’ and MAX to ‘3’. Connect the output to the COND pin
of the if-else node. Set T to ‘196’ so that the buzzer plays a G for the first four
notes (count between 0-3). Set F to ‘220’ so that the buzzer plays an A
otherwise. Add a to-bus node to the if-else output pin and name it ‘FREQ’. This
will feed back into the loop to set the FREQ pin of the buzzer-timed node.

BEAT
This part enables the buzzer pulse after beats 1-7. Use the second between
node. Add a from-bus node to X and name it ‘COUNT’. Set MIN to ‘1’ and MAX
to ‘7’. Add a to-bus node to the output pin and name it ‘BEAT’. This will feed
back into the loop as one of the conditions that will enable the clock.

ROUND
This part records when the sequence is finished. Connect a from-bus node to
the first input pin of the equal node and name it ‘COUNT’. Set the second
equal input pin to ‘8’. Connect the output pin to the count INC pin so that the
count increases when the sequence is done. Connect the input-pulse node to
the count RST pin and name it ‘RST-RND’. We will use this to reset the count
at the end. Add the output-number node to the count output and name it ‘RND’
so that we can see the number of times the sequence has played. Connect
the pulse-on-true node to the equal output and then add the output-pulse node
and name it ‘DONE’. This will let us see when the sequence is complete.

A

B

C

PAGE: 68 // 96

No-Code Programming for Biology | Beginner’s Guide

ADD NODES TO PLAY-TUNE

7 8

COUNTING THE ROUND NUMBER

To start we need to know the current round number. We
added an output-number node (RND) to each of our
nodes to count how many times it has been played.
Connect both of these RND pins to the add node to sum
these two values and find the total round number.

11

SET BUS

Add a from-bus node
to the SET pin of
bar124 and name it
‘SET’. This bus will
initiate the bar124
sequence.

We will now set up a series of logic conditions to decide
when to play each bar. Add the following nodes to the
play-tune patch: bar124, bar3, add, defer, equal x4, or, any,
not (xod/core), button (xod/common-hardware), to-bus
x5, from-bus x9 (xod/patch-nodes).

DEFER AND RND BUS

9

We will be creating a
feedback loop again,
so add a defer node to
the add output. Then
add a to-bus node to
this and name it ‘RND’.

PLAYING BAR 1

10

We will use the button on the board to initiate round 1.
Set the button PORT pin to ‘D6’ and PRS pin to ‘True’.
Then connect the PRS pin to the not node. Connect not
output to one of the inputs of any. Leave the other any
input unconnected for now. Add a to-bus node to the not
output pin and name it ‘SET’.

Sequences and Loops

PAGE: 69 // 96

13

BAR124 BUS

Add a from-bus node
to the other any input
(see Step 10). Name it
‘BAR124’. This will set
the bar124 sequence
after bars 1 and 3.

PLAYING BAR 3 AND BAR3 BUS

We want bar3 to play at the end of bar 2. Add a from-bus
node to the input of the third equal node and name it
‘RND’. Set the second input of equal to 2. Add a to-bus
node to the output and name it ‘BAR3’. Add a from-bus
node to the SET pin of bar3 and name it ‘BAR3’. This bus
will initiate bar3 after bar 2.

14

PLAYING BARS 2 AND 4

We also want to initiate bar124 at the end of bars 1 and 3. Use two equal nodes. Connect a
from-bus node to the first input of each and name them both ‘RND’ so that they receive the
round number. Set the second input of one to ‘1’ and the other to ‘3’. Connect the outputs
of both nodes to the input pins of the or node. Add a to-bus node to the output of or and
name it ‘BAR124’.

12

PAGE: 70 // 96

No-Code Programming for Biology | Beginner’s Guide

RESETTING THE SEQUENCE

15 16

RST BUS

Name both from-bus
nodes ‘RST’. Add one
to the RST pin of
bar124 and one to the
RST pins (RST-RND,
RST-BEAT) of bar3.

EXPERIMENT!

Congratulations,
you’ve completed the
final task! Your final
patch should look
something like this.

Play around with this
patch and the nodes
you have used. Try
creating a different
tune. Or try to make
the LED flash along in
time with the notes.
The possibilities are
endless now that you
understand the core
principles.

After round 4 we want to reset the sequence so that the
round count returns to 0. We added RST pins to our
bar124 and bar3 nodes for this. Add a from-bus node to
the first input of the final equal node and name it ‘RND’.
Set the second input to ‘4’ so the reset happens after bar
4. Add a to-bus node to the output pin and name it ‘RST’.

Sequences and Loops

UPLOAD AND TEST

17

Finally, upload the
programme and test it
out by pressing the
button on your board!

18

PAGE: 71 // 96

Comment Boxes
When creating a more complex programme like this it is often useful to include comment boxes, both to help keep
track of what you are doing, and to make it easier for others to follow your workflow. This is the XOD equivalent of
‘commenting out’ notes when writing code.

In the example above you can see that comments have been added above each section of the programme to
describe what that part of the patch is doing. Try adding your comments to annotate your play-tune patch. You can
add a comment box by navigating to ‘Edit > Insert Comment” in the menu bar.

You can also add formatting to your XOD comment boxes, for example:
• *Surround text with stars to add bold white text*
• **Surround text with two stars to add bold red text**
• - Use a dash before text to add a bullet list
• 1. Use a number and point before text to add a number list

You can read more about adding comments to document your nodes and XOD ‘markdown’ (formatting) on the XOD
website at www.xod.io/docs/guide/documenting-nodes.

https://xod.io/docs/guide/documenting-nodes/

PAGE: 72 // 96

No-Code Programming for Biology | Beginner’s Guide

PAGE: 73 // 96

Lesson 5:
Next Steps

Expanding Your Capability

Additional Information

Case Studies

PAGE: 74 // 96

No-Code Programming for Biology | Beginner’s Guide

Next Steps

Congratulations, you have completed the No-Code Programming for Biology
beginner’s course! Starting from understanding your board and how to
programme it, through to building your own nodes and complex sequences, this
guide has taken you through how to use each of the onboard devices, as well
as how to preform a range of useful functions in XOD.

You should now be comfortable with your board and the XOD software, and
should have gained a better understanding of how these tools can be used to
create programmes and devices that respond to, and influence, their
environment. Once you understand the basic principles of programming
microcontrollers such as this, the possibilities for applications are endless.

In this chapter we will provide information about how you can build on these
skills to start developing your own custom devices, as well as where to find
components, information and help to guide you in your next steps. We will also
provide some examples of how previous Biomaker participants have applied
these skills to real-world applications to assist with biological research in the
lab and field. Finally we provide some additional useful information including an
overview of alternative development boards, a list of useful websites, a Grove
board cheat sheet, a list of XOD nodes used in this guide, and a glossary of
terms.

OBJECTIVES

By the end of this chapter you should be able to:

• Recall where to find additional components compatible with your board.
• Recognise the different ways to connect new components to your board.
• Locate compatible XOD nodes for new devices.
• Outline some examples of how these skills can be applied to biological

research.
• Recall where to find additional information and help with building your own

devices.

Open Smart easy-plug LED breakout board connected to the Grove board

PAGE: 75 // 96

Expanding Your Capability

Additional Components

GROVE
COMPONENTS

OPEN SMART
COMPONENTS

OTHER
COMPONENTS

M5STACK

The Grove board is made by open hardware company Seeed Studio, that
provides a whole series of Grove components that are compatible with
the Grove board via simple ‘plug-and-play’ connectors. These
components can be plugged directly into the board using the white plug
sockets in the middle of the board, and the cables provided in the kit. You
can browse Grove-compatible components on the Seeed Studio website
(www.seeedstudio.com > Shop > Grove).

M5Stack is another hardware company that sells its own Grove-
compatible components which they term ‘units’. You can browse
M5Stack Grove-compatible components on the M5Stack website
(www.m5stack.com > Store > Unit).

The Biomaker Expansion kit is comprised of components from an
alternative supplier, Open Smart. Open Smart provide both an ‘easy-plug’
system similar to the Grove system, as well as a wider variety of
components which require simple, no-solder wiring. Grove plugs are not
compatible with Open Smart plugs, so an expansion shield is required to
connect these components to the board (see p77). You can browse Open
Smart components on the Open Smart Ali Express store (www.open-
smart.aliexpress.com).

Grove and Open Smart provide easy-to-use systems for connecting
components to your Grove (or any other Arduino board), however, there
are also a staggering variety of other suppliers and components available
if you introduce a small amount of wiring and soldering. Companies such
as Adafruit, SparkFun and Seeed Studio all provide useful electronics
modules that can be easily connected to your board by soldering, or
using a prototyping shield (see p76).

Seeed Studio (Grove), Adafruit and SparkFun are all based in the USA, and you can buy
components directly from their websites, although customs fees and taxes are likely to apply.
Fortunately, many of these components are also available from UK suppliers such as Farnell
(www.uk.farnell.com), Cool Components (www.coolcomponents.co.uk), RS Components
(www.uk.rs-online.com) and Mouser Electronics (www.mouser.co.uk).

M5Stack and Open Smart are based in China and you can buy components from their
storefronts on Ali Express (www.open-smart.aliexpress.com and www.m5stack.aliexpress.com).

The wide variety of low-cost components available for working with Arduino can be daunting,
and understanding how to use and connect these components to your board can seem
complex. Below we outline some of the simple systems available for connecting new hardware
to your board, and on the next page we will discuss how to connect or wire up these
components.

https://www.seeedstudio.com/category/Grove-c-1003.html?p=2
https://m5stack.com/
https://www.seeedstudio.com/category/Grove-c-1003.html?p=2
https://open-smart.aliexpress.com/store/1199788
https://open-smart.aliexpress.com/store/1199788
https://uk.farnell.com/
https://coolcomponents.co.uk/
https://uk.rs-online.com/web/
https://www.mouser.co.uk/
https://open-smart.aliexpress.com/store/1199788
https://m5stack.aliexpress.com/

PAGE: 76 // 96

No-Code Programming for Biology | Beginner’s Guide

There are a number of ways to connect additional components to your board, most of which make use of the board’s ‘header
sockets’. These are the yellow plastic sockets arrayed around the left and right edges of the board’s central module. Electronic
components can be wired to these sockets (either directly or via a breadboard), added as part of a shield, or connected via a
breakout board. Sometimes a combination of these methods is used. Below we explain each of these options.

Shields are modular circuit boards that piggyback
onto your Arduino to instil it with extra
functionality. They use a series of header pins that
fit directly into the header sockets. Shields can add
a variety of functions, for example allowing the
board to communicate via WiFi, adding extra
storage capacity, or accessing GPS. Expansion
and prototyping shields provide additional sockets
or header pins that allow you to expand the
capacity of your board and easily connect any
number of custom components.

Each of the small header sockets on the board
connects to one of the board’s pins (see p11). You
can wire components directly into these sockets,
but more often a breadboard or shield is used.
Breadboards are a way to easily make and test
electronic circuits. You can learn more about them
on the SparkFun website
(www.learn.sparkfun.com/tutorials/how-to-use-
a-breadboard). The hook-up wires used to connect
components usually come with two types of ends:
male and female. Female ends are like individual
sockets (similar to the header sockets), whilst
male ends are metal pins, which fit into header and
female sockets.

SHIELDS

A breakout board is similar to a shield but usually
with a single or small number of electronic
components included. They are used to make
wiring of components easier. Each of the modules
(LED, buzzer etc.) on your Grove board is
essentially a built in breakout board. It is often
easiest to purchase components as part of a
breakout board and then use electronic wiring or a
shield to connect the breakout board to the
Arduino.

BREAKOUT
BOARDS

ELECTRONIC
WIRING

Expanding Your Capability

Connecting Components

Left:: Wiring to an Arduino using a breadboard
Right: Male (top) and Female (bottom) wires

Open Smart shield connected to the Grove board

Open Smart easy-plug (left) and standard (right)
LED breakout boards

Image Credits: Adafruit Industries CC

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard

PAGE: 77 // 96

CONNECTING OPEN SMART EASY-PLUG COMPONENTS

Open Smart ‘easy-plug’ components are similar to Grove components, but the plugs are
not compatible. Adjust for this by plugging the easy-plug expansion shield into the header
sockets, then use easy-plug cables to plug components in your breakout board. Again,
note the name of the port you are using. Use A0-A3 for analog devices, D3, D5 and D6 for
digital devices and I2C for I2C devices. For more information see the Biomaker website
(www.biomaker.org/s/Biomaker-Easy-Plug-Expansion-Kit-Information-Sheet.pdf).

CONNECTING GROVE COMPONENTS

Grove components come as breakout boards with white Grove sockets included. You can
use Grove cables (six are included in the Grove Beginner Kit) to connect them to the board.
Simply plug one end into the breakout board, and one end into a white socket on the board.
Note the name of the port you’re using (A0, D5). This is written below the socket. Use A0,
A2 and A6 for analog devices, D2-7 for digital devices and I2C for I2C devices.

https://www.biomaker.org/s/Biomaker-Easy-Plug-Expansion-Kit-Information-Sheet.pdf

PAGE: 78 // 96

No-Code Programming for Biology | Beginner’s Guide

Expanding Your Capability

CONNECTING STANDARD OPEN SMART COMPONENTS

Standard Open Smart breakout boards come with male pins attached. You can use the Open Smart expansion shield and
male-male wires to easily connect these components. Plug the Open Smart expansion shield into the header sockets, then
use female-to-female wires to connect the pins on the breakout board to the pins on the expansion shield. Connect each
pin to its corresponding pin on the expansion shield. E.g. connect VCC to VCC, GND to GND and SIG to a relevant pin (A0-5
for analog devices and D7,8,12 and 13 for digital devices). For I2C connect SDA to SDA and SCL to SCL. For more
information see the Biomaker website (www.biomaker.org/s/No-Code-Programming-for-Biology-Handbook.pdf).

Connecting Other Types of Component
Breakout boards from other companies often come without connectors. You can add connectors by soldering header pins to
them. Then you can use them like Open Smart components. For an excellent tutorial demonstrating this, see www.rimstar.org/
science_electronics_projects/pin_headers_soldering_cutting_male_female.htm.

Component Clashes
Because your Grove board already has components connected to many of the pins you may encounter clashes if
you try to connect a second device to the same pin. This may or many not disrupt your programme, depending on
the devices involved. To avoid this, prioritise use of pins without devices already attached, such as D2. If clashes
become an issue you can use a different Arduino, such as the Arduino Rich Uno R3 (provided in the Biomaker
expansion kit), or you could detach the central module of the Grove board to use separately. Note that clashes are
not an issue with I2C devices as they can be connected to the same pins and identified via their addresses.

https://www.biomaker.org/s/No-Code-Programming-for-Biology-Handbook.pdf
https://rimstar.org/science_electronics_projects/pin_headers_soldering_cutting_male_female.htm
https://rimstar.org/science_electronics_projects/pin_headers_soldering_cutting_male_female.htm

PAGE: 79 // 96

Using Arduino IDE
XOD, and other ‘no-code’ programming options, are a really useful way to get started working with microcontrollers.
They require less up-front learning and offer an alternative and intuitive way of thinking about programming.
However, you may also be interested in learning to code - either as an extension to your XOD programming skills, or
as an alternative. Arduino provides it own free software for programming: the Arduino IDE, which is available for
download at www.arduino.cc/en/software. This software uses the C++ language for programming. Grove provides
an excellent guide for programming your board using the Arduino IDE at www.files.seeedstudio.com/wiki/Grove-
Beginner-Kit-For-Arduino/res/Grove-Beginner-Kit-For-ArduinoPDF.pdf.

One advantage of using the Arduino IDE is the vast amount of resources available for working with almost any
piece of hardware. Whilst the XOD community is growing fast and new libraries are being added all the time, you
may find that certain hardware and components do not yet have compatible XOD nodes. In this case, there is
almost always an Arduino IDE library that can be used. Another option is to convert existing Arduino IDE libraries
into XOD libraries. Matt Wayland has written an excellent guide detailing how to convert Arduino libraries for use in
XOD, available at www.biomaker.org/s/converting-arduino-to-xod_wayland.pdf. Further guidance on creating
libraries of XOD in C++ is available on the XOD website at www.xod.io/docs/guide/nodes-for-xod-in-cpp and
www.xod.io/docs/guide/analog-sensor-node.

You can also use XOD in combination with Arduino IDE. For example, you could write a programme in XOD, then
navigate to ‘Deploy > Show Code for Arduino’ in the menu bar to export this programme in code. You could then
add additional code in Arduino. For example, code to control a device not supported in XOD.

Finding XOD Nodes
Once you have found a component that you would like to use you will need to find a XOD node
to represent that hardware. The xod/common-hardware library provides nodes for a number of
commonly used components and many more nodes have been created by the XOD community.

As a standard electronic components are assigned a ‘reference designator’. This short
combination of letters and numbers identifies specific components, for example, the Grove
board uses the ‘BMP280’ barometer and the ‘SSD1306’ OLED screen. This system is useful as it
is easy to compare components, understand what hardware others are using, and search for
complimentary nodes and/or code for programming the hardware.

In XOD, many contributors have created specific libraries to deal with certain pieces of
hardware, and you can search these libraries on the XOD website at www.xod.io/libs. It is
usually easiest to search using the hardware’s reference designator. Another useful way to find
libraries is to search the XOD forum at www.forum.xod.io. This can help you to find relevant
node and libraries, as well as identify any common issues others have had when using specific
pieces of hardware.

https://www.arduino.cc/en/software
https://files.seeedstudio.com/wiki/Grove-Beginner-Kit-For-Arduino/res/Grove-Beginner-Kit-For-ArduinoPDF.pdf
https://files.seeedstudio.com/wiki/Grove-Beginner-Kit-For-Arduino/res/Grove-Beginner-Kit-For-ArduinoPDF.pdf
https://www.biomaker.org/s/converting-arduino-to-xod_wayland.pdf
https://xod.io/docs/guide/nodes-for-xod-in-cpp/
https://xod.io/docs/guide/analog-sensor-node/
https://xod.io/libs/
https://forum.xod.io/

PAGE: 80 // 96

No-Code Programming for Biology | Beginner’s Guide

Case Studies

eCO-SENSE: Soil Sensors Powered by Plant Photosynthesis
This project aims to prototype a low-cost soil sensor powered by biophotovoltaics. The device uses an Arduino Uno, temperature
sensor, moisture sensor and gas sensor to take measurements of soil conditions, and adds a bluetooth module to send the data
wirelessly to a phone or computer. Working together with Dr Paolo Bombelli from the University of Cambridge, the team aims to use
biophotovoltaic cells to power their device, allowing it to be used in-situ and in low-resource environments.

The project used a DHT22 temperature and humidity sensor (similar to the DHT11 sensor on the Grove board), an FC-28 moisture
sensor, an SGP30 gas sensor and an nRF8001 bluetooth breakout board. Grove compatible alternatives include the Grove DHT11 or
DHT22 sensors (use node xod/dev/dht2x-hygrometer and socket D2), the Grove Soil Moisture sensor (use node xod/common-
hardware/analog-sensor and sockets A0/A2/A6 - beware of clashes), the Grove VOC and eCO2 sensor (convert SparkFun or Adafruit
Arduino libraries and use I2C socket, address 58h) and the Grove Blueseeed module (use UART socket). Wireless communication is
not yet fully supported in XOD, but for a useful tutorial exploring how to send sensor data to your Android phone via bluetooth using
Arduino IDE see www.instructables.com/How-to-Receive-Arduino-Sensor-Data-on-Your-Android.

You can read more about the eCO-SENSE project on their Hackster page:
www.hackster.io/glen-chua/eco-sense-soil-sensors-powered-by-plant-photosynthesis-be80a2

Image Credits: eCO-SENSE Biomaker Team

https://www.instructables.com/How-to-Receive-Arduino-Sensor-Data-on-Your-Android/
https://www.hackster.io/glen-chua/eco-sense-soil-sensors-powered-by-plant-photosynthesis-be80a2

PAGE: 81 // 96

Image Credit: Behavioural Chamber Biomaker Team

Behavioural Chamber to Evaluate Rodent Forelimb
Grasping
This project uses a light emitter and light sensor to monitor when a rodent moves past a certain threshold, and
triggers release of a sugar pellet when it does.

The project uses a red laser pointer and GL5528 light sensor to create a trip sensor that notifies the programme
when a rodent has crossed a boundary. This then instructs a ULN2003 motor driver to initiate the custom built
pellet dispenser. A count of how many times a rodent has completed this task is shown on an LCD screen. Grove
compatible alternatives include the Grove Light Sensor (included on the board, use node xod/common-hardware/
analog-sensor and sockets A0/A2/A6 - beware of clashes), the Grove I2C Motor Driver (use node gweimer/h-
bridge/h-bridge-2dir and I2C socket, variable address) and the Grove 16 x 2 LCD (use node xod-dev/text-lcd/text-lcd-
i2c-16x2 and I2C socket, address 3Eh).

You can read more about the behavioural chamber project on their Hackster page:
www.hackster.io/alejandrocarn/a-behavioural-chamber-to-evaluate-rodent-forelimb-grasping-bedb1a

https://www.hackster.io/alejandrocarn/a-behavioural-chamber-to-evaluate-rodent-forelimb-grasping-bedb1a

PAGE: 82 // 96

No-Code Programming for Biology | Beginner’s Guide

Case Studies

Camera for Monitoring Plant Pollination Events
This project developed a video and time-lapse monitor to record pollinators interacting with plants. The set up
included an environmental sensor to measure temperature, humidity and barometric pressure and wrote this data
into the image file names on a microSD card for later analysis.

The project used a Raspberry Pi (see p84), a 160° variable focus camera, a BME280 temperature pressure and
humidity sensor and a 128x64 OLED screen. Grove compatible alternatives include the Grove BME280 Barometer
sensor (use node emiliosancheza/bme280-sensor/sensor-bme280 and I2C socket, address 76h), the Grove OLED
Display 0.96 inch (included on the board, use library wayland/ssd1306-oled-i2c and I2C socket, address 3Ch) and
the Grove Serial Camera Kit with a Grove SD Card Shield. Camera modules are not yet supported in XOD, but
information of how to use the Grove Serial Camera is available at www.wiki.seeedstudio.com/Grove-
Serial_Camera_Kit. Note that for a high resolution auto-focussing camera, like the one used in this project,
Raspberry Pi is a better option than Arduino, as these tasks require high processing power.

You can read more about the plant pollination monitor project on their Hackster page:
www.hackster.io/team-ppi/variable-time-camera-for-monitoring-plant-pollination-events-ad21e7

Image Credit: Plant Pollination Monitor Biomaker Team

https://wiki.seeedstudio.com/Grove-Serial_Camera_Kit/
https://wiki.seeedstudio.com/Grove-Serial_Camera_Kit/
https://www.hackster.io/team-ppi/variable-time-camera-for-monitoring-plant-pollination-events-ad21e7

PAGE: 83 // 96

Open Source Microbial Bioreactor
This project aims to develop an open source bioreactor to optimise yield of enzymes producing recombinant
proteins for molecular biology. The bioreactor measures optical density of the culture and monitors and regulates
the pH, temperature and aeration.

The project uses an LED and photodiode to measure optical density, a pH probe and peristaltic pump to maintain
pH and an LCD screen to display the reactor conditions. The team also aims to add a temperature sensor and
heating pad to maintain temperature, and an oxygen sensor and agitation device to maintain aeration. Grove
compatible alternatives include the Grove Red LED (included on the board, use node xod/common-hardware/led
and socket D4), the Grove Light sensor (included on the board, use node xod/common-hardware/analog-sensor and
sockets A0/A2/A6 - beware of clashes), the Grove pH sensor (use node xod/common-hardware/analog-sensor and
sockets A0/A2/A6 - beware of clashes), the Grove I2C Motor Driver to drive a peristaltic pump (use node
gweimer/h-bridge/h-bridge-2dir and I2C socket, variable address) and the Grove 16 x 2 LCD (use node xod-dev/text-
lcd/text-lcd-i2c-16x2 and I2C socket, address 3Eh).

You can read more about the microbial bioreactor project on their Hackster page:
www.hackster.io/open-bioeconomy-lab/microbial-bioreactor-d7f61b

Image Credit: Microbial Bioreactor Biomaker Team

https://www.hackster.io/open-bioeconomy-lab/microbial-bioreactor-d7f61b

PAGE: 84 // 96

No-Code Programming for Biology | Beginner’s Guide

Additional Information

Image Credits: SparkFun Electronics CC

Arduino boards, left to right: Arduino Uno, Arduino Pro Mini, Lilypad Arduino,
Arduino Mega 2560

Image Credits: SparkFun Electronics CC

Raspberry Pi boards, left to right: Raspberry Pi 4 Model B, Raspberry Pi 3 A+,
Raspberry Pi Zero W

Alternative Development Boards

The Grove board is a great place to start with building your own devices, as it is
simple to use, low-cost, easily accessible, and comes with a range of useful
inbuilt components. However, there are a wide variety of other boards available
for getting started with projects like this.

The two most commonly used types of development boards are Arduino and
Raspberry Pi, and each of these companies provide a range of boards for
different uses. Whilst Arduino boards are microcontrollers that can perform one
programme at a time, Raspberry Pi boards are fully-operational computers that
can perform multiple tasks at once. A Raspberry Pi may be better for more
complex projects, but Arduino boards are easier to use and suited for most
simple projects. Note that XOD does not yet support programming of Raspberry
Pi boards.

You can find a comparison of Arduino models on the SparkFun website
(www.learn.sparkfun.com/tutorials/arduino-comparison-guide) and a
comparison of Raspberry Pi models on the PiHut website (www.thepihut.com/
blogs/raspberry-pi-roundup/raspberry-pi-comparison-table).

https://learn.sparkfun.com/tutorials/arduino-comparison-guide
https://thepihut.com/blogs/raspberry-pi-roundup/raspberry-pi-comparison-table
https://thepihut.com/blogs/raspberry-pi-roundup/raspberry-pi-comparison-table

PAGE: 85 // 96

Useful Links

Contacts
synbio@hermes.cam.ac.uk
Dr. Steph Norwood: san43@cam.ac.uk
Prof. Jim Haseloff: jh295@cam.ac.uk

BIOMAKER

NO-CODE
PROGRAMMING

HACKSTER

XOD

ARDUINO

ARDUINO CREATE

www.biomaker.org
Collection of technical information, pointers to tutorials and software resources, information
about the Biomaker Challenge
www.biomaker.org/nocode-programming-for-biology-handbook
Information on the No-Code Programming for Biology programme, handbook downloads,
tutorials and videos.
www.hackster.io/biomaker
Biomaker community hub used for open documentation of Biomaker projects and tutorials.
www.xod.io
Download XOD software, libraries, documentation and forum advice.
www.arduino.cc
Official repository of Arduino information.
www.create.arduino.cc
Integrated resource for code and project-sharing.
www.seeedstudio.com
Hardware supplier for the Biomaker Starter Kit and Grove components.
www.open-smart.aliexpress.com/
Source of hardware for Biomaker expansion kit.
www.sparkfun.com
Good source of practical information about microcontrollers and devices.
www.adafruit.com
Good source of practical information about microcontrollers and devices.
www.instructables.com/classes/
Classes in many maker skills, including electronics and 3D printing.
www.fritzing.org
Open source circuit layout and illustration.
www.processing.org
Software sketchbook for dynamic graphics and visual arts.
www.synbio.cam.ac.uk
Information, news and events from the Synthetic Biology Interdisciplinary Research Centre
at the University of Cambridge
www.openplant.org
Information, news and events from the BBSRC-EPSRC Synthetic Biology Research Centre

SEEED STUDIO

OPEN SMART

SPARKFUN

ADAFRUIT

INSTRUCTABLES

FRITZING

PROCESSING

SYNTHETIC
BIOLOGY IRC

OPENPLANT

mailto:synbio@hermes.cam.ac.uk
mailto:san43@cam.ac.uk
https://jh295@cam.ac.uk
https://www.biomaker.org
https://www.biomaker.org/nocode-programming-for-biology-handbook
https://www.hackster.io/biomaker
https://xod.io
https://www.arduino.cc
https://create.arduino.cc
https://www.seeedstudio.com
https://open-smart.aliexpress.com/
https://open-smart.aliexpress.com/
https://www.sparkfun.com
https://www.adafruit.com
https://www.instructables.com/classes/
https://fritzing.org
https://processing.org
https://www.synbio.cam.ac.uk
https://www.openplant.org

PAGE: 86 // 96

No-Code Programming for Biology | Beginner’s Guide

Additional Information

2

3

4 5

1

BUZZER

Node: marcoaita/malibrary/buzzer
Settings: PORT = D5

EN = True
FREQ = 440

Used in: Task 2 (p26-29), Task 9 (p64-71)

2

3 OLED SCREEN (SSD1306)

Nodes: wayland/ssd1306-oled-i2c/ssd1306-oled-i2c-device
wayland/ssd1306-oled-i2c/clear-display
wayland/ssd1306-oled-i2c/send-buffer-to-display

Settings: ADDRESS = 3Ch
WEIGHT = 128
HEIGHT = 64
RESET = -1

Notes: Add any other nodes from wayland/ssd1306-oled-i2c
between clear-display and send-buffer-to-display.
Connect ssd1306-oled-i2c-device DEV to all DEV pins.
Connect clock node to clear-display UPD then connect
each UPD pin in turn.

Used in: Task 6 (p49-55), Task 7 (p56-59), Task 8 (p60-63)

BUTTON

Node: xod/common-hardware/button
Settings: PORT = D6

UPD = Loop
Notes: button is automatically on and turns off with a press.

Use a not node to invert this.
Used in: Task 2 (p26-29)

4

ROTARY POTENTIOMETER

Node: xod/common-hardware/pot
Settings: PORT = A0

UPD = Loop
Used in: Task 2 (p26-29)

5

LED

Node: xod/common-hardware/led
Settings: PORT = D4

LUM = luminance (brightness) between 0-1
ACT = True

Used in: Task 1 (p20-25), Task 4 (p36-41)

1 Grove Board Cheat-Sheet
This cheat-sheet provides a quick guide to which XOD
node to use for each of the inbuilt components on the
Grove All-In-One Beginner Kit for Arduino.

PAGE: 87 // 96

LIGHT SENSOR

Node: wayland/analog-read-no-port-check/
analog-read-no-port-check

Settings: PORT = A6
UPD = Loop

Used in: Task 8 (p60-63)

6

6 7

8

9 10

SOUND SENSOR

Node: xod/common-hardware/analog-sensor
Settings: PORT = A2

UPD = Loop
Used in: Task 6 (p49-55)

7

•

8 TEMPERATURE AND HUMIDITY SENSOR (DHT11)

Node: xod-dev/dht/dht11-hygrometer
Settings: PORT = D3

UPD = Connect clock node
Notes: Setting UPD to ‘Loop’ can cause errors.
Used in: Task 3 (p33-35)

AIR PRESSURE SENSOR (BMP280)

Node: wayland/bmp280-barometer/barometer-thermometer
Settings: MODE = 03h

OST = 02h
OSP = 05h
FILT = 04h
STDBY = 04h
UPD = Loop

Used in: Task 5 (p42-45)

9

3-AXIS ACCELERATION SENSOR (LIS3DH)

Node: wayland/lis3dh-
accelerometer/accelerometer

Settings: ADDR = 19h
RATE = 07h
RANGE = 00h

Used in: Task 7 (p56-59)

10

The guide suggests a node for each component as well
as some standard settings. Other nodes and settings
can also be used, and we highly encourage playing
around with node settings and searching for new nodes.

PAGE: 88 // 96

No-Code Programming for Biology | Beginner’s Guide

Additional Information

accelerometer wayland/lis3dh-accelerometer/accelerometer Task 7 p56-59
add xod/core/add Task 9 p64-71
analog-read-no-port-check wayland/analog-read-no-port-check/

analog-read-no-port-check Task 8 p60-63
analog-sensor xod/common-hardware/analog-sensor Task 6 p49-55

Case Studies p80-83
and xod/core/and Task 8 p60-63
any xod/core/any Task 8 p60-63

Task 9 p64-71
bar124 custom node created in... Task 9 p64-71
bar3 custom node created in .. Task 9 p64-71
barometer-thermometer wayland/bmp280-barometer/barometer-thermometer Task 5 p42-45
between e/comparison/between Task 9 p64-71
button xod/common-hardware/button Task 1 p20-25

Task 2 p26-29
Task 9 p64-71

buzzer marcoaita/malibrary/buzzer Task 2 p26-29
buzzer-timed marcoaita/malibrary/buzzer-timed Task 9 p64-71
clear-display wayland/ssd1306-oled-i2c/clear-display Task 6 p49-55

Task 7 p56-59
click-detector wayland/lis3dh-accelerometer/click-detector Task 7 p56-59
clock xod/core/clock Task 1 p20-25

Task 4 p36-41
Task 6 p49-55
Task 7 p56-59
Task 9 p64-71

concat xod/core/concat Task 5 p42-45
Task 8 p60-63

count xod/core/count Task 4 p36-41
Task 6 p49-55
Task 9 p64-71

dec-to-2digits cesars/utils/dec-to-2digits Task 5 p42-45
dec-to-4digits cesars/utils/dec-to-4digits Task 5 p42-45
defer xod/core/defer Task 9 p64-71
delay xod/core/delay Task 9 p64-71
dht11-hygrometer xod-dev/dht/dht11-hygrometer Task 3 p33-35
dht2x-hygrometer xod/dev/dht2x-hygrometer Case Studies p80-83
draw-circle wayland/ssd1306-oled-i2c/draw-circle Task 6 p49-55

Task 7 p56-59
draw-line wayland/ssd1306-oled-i2c/draw-line Task 6 p49-55
draw-pixel wayland/ssd1306-oled-i2c/draw-pixel Task 6 p49-55
draw-rectangle wayland/ssd1306-oled-i2c/draw-rectangle Task 6 p49-55
draw-rounded-rectangle wayland/ssd1306-oled-i2c/draw-rounded-rectangle Task 6 p49-55
draw-text wayland/ssd1306-oled-i2c/draw-text Task 6 p49-55
draw-triangle wayland/ssd1306-oled-i2c/draw-triangle Task 6 p49-55
equal xod/core/equal Task 9 p64-71
flip-flop xod/core/flip-flop Task 4 p36-41
flip-n-times xod/core/flip-n-times Task 4 p36-41
format-number xod/core/format-number Task 5 p42-45
from-bus xod/patch-nodes/from-bus Task 7 p56-59

Task 8 p60-63
Task 9 p64-71

greater xod/core/greater Task 8 p60-63
h-bridge-2dir gweimer/h-bridge/h-bridge-2dir Case Studies p80-83
if-else xod/core/if-else Task 8 p60-63

Task 9 p64-71

List of Nodes Used

PAGE: 89 // 96

input-boolean xod/patch-nodes/input-boolean Task 6 p49-55 Task 9 p64-71
input-byte xod/patch-nodes/input-byte Task 6 p49-55
input-number xod/patch-nodes/input-number Task 6 p49-55 Task 7 p56-59

Task 8 p60-63
input-port xod/patch-nodes/input-port Task 6 p49-55 Task 8 p60-63
input-pulse xod/patch-nodes/input-pulse Task 6 p49-55 Task 8 p60-63

Task 9 p64-71
input-string xod/patch-nodes/input-string Task 6 p49-55
input-t1 xod/patch-nodes/input-t1 Task 6 p49-55
invert-display wayland/ssd1306-oled-i2c/invert-display Task 6 p49-55
join xod/core/join Task 5 p42-45
led xod/common-hardware/led Task 1 p20-25 Task 4 p36-41

Case Studies p80-83
less xod/core/less Task 8 p60-63
light-sensor custom node created in... Task 8 p60-63
map xod/math/map Task 2 p26-29 Task 7 p56-59
multiply xod/core/multiply Task 8 p60-63
nand xod/core/nand Task 8 p60-63
nor xod/core/nor Task 8 p60-63
not xod/core/not Task 1 p20-25 Task 2 p26-29

Task 9 p64-71
number-split-to-digit gst/number-split-to-digit/number-split-to-digit Task 5 p42-45
or xod/core/or Task 8 p60-63 Task 9 p64-71
output-boolean xod/patch-nodes/output-boolean Task 6 p49-55
output-byte xod/patch-nodes/output-byte Task 6 p49-55
output-number xod/patch-nodes/output-number Task 6 p49-55 Task 9 p64-71
output-port xod/patch-nodes/output-port Task 6 p49-55
output-pulse xod/patch-nodes/output-pulse Task 6 p49-55 Task 9 p64-71
output-string xod/patch-nodes/output-string Task 6 p49-55 Task 8 p60-63
output-t1 xod/patch-nodes/output-t1 Task 6 p49-55
pot xod/common-hardware/pot Task 2 p26-29
pulse-on-true xod/core/pulse-on-true Task 8 p60-63 Task 9 p64-71
rotate-display wayland/ssd1306-oled-i2c/rotate-display Task 6 p49-55 Task 7 p56-59
round xod/math/round Task 7 p56-59
send-buffer-to-display wayland/ssd1306-oled-i2c/ send-buffer-to-display Task 6 p49-55 Task 7 p56-59
sensor-bme280 emiliosancheza/bme280-sensor/sensor-bme280 Case Studies p80-83
square-wave xod/waves/square-wave Task 4 p36-41
ssd1306-oled-i2c-device wayland/ssd1306-oled-i2c/ssd1306-oled-i2c-device Task 6 p49-55 Task 7 p56-59
text-lcd-i2c-16x2 xod-dev/text-lcd/text-lcd-i2c-16x2 Case Studies p80-83
to-bus xod/patch-nodes/to-bus Task 7 p56-59 Task 8 p60-63

Task 9 p64-71
tweak-boolean xod/debug/tweak-boolean Task 3 p33-35
tweak-byte xod/debug/tweak-byte Task 3 p33-35
tweak-color xod/debug/tweak-color Task 3 p33-35
tweak-number xod/debug/tweak-number Task 3 p33-35 Task 7 p56-59

Task 8 p60-63
tweak-pulse xod/debug/tweak-pulse Task 3 p33-35 Task 4 p36-41
tweak-string-16/32/64/128 xod/debug/tweak-string-16/32/64/128 Task 3 p33-35
watch xod/debug/watch Task 3 p33-35 Task 4 p36-41

Task 5 p42-45 Task 6 p49-55
Task 8 p60-63

write-dot-to-oled custom node created in... Task 7 p56-59
write-text-to-oled custom node created in... Task 6 p49-55 Task 8 p60-63
xor xod/core/xor Task 8 p60-63

Note: for items in grey examples of their use are given, but a full demonstration is not provided in this guide.

PAGE: 90 // 96

No-Code Programming for Biology | Beginner’s Guide

Glossary

ACCELEROMETER Accelerometers measure the acceleration of an object, i.e. any change in
velocity (speed and direction). A 3-axis accelerometer, like the one included
in the Grove board, can sense when the board is moved or tilted in any
direction (X, Y and Z axes).

ACTUATOR Actuators are output devices that convert electronic signals into
mechanical movement. For example motors, belts or pumps.

ADAFRUIT Adafruit Industries is an open-source hardware company the provides
electronic components, tools, accessories and learning resources. Their
components are compatible with Arduino and Raspberry Pi hardware.

ANALOG Analog signals, unlike digital signals, are continuous and and can take an
infinite number of values. Analog devices measure continuous variables,
such as sound or light intensity. Many environmental sensors are analog
devices. Computers use digital, rather than analog signals, so analog
signals must first be converted to digital signals by the microcontroller.

ARDUINO Arduino is an open-source electronics company. They make openly
available programming software and low-cost hardware to allow anyone to
get started making their own interactive electronics projects.

ARDUINO IDE The Arduino Integrated Development Environment (IDE) is Arduino’s free
software for programming Arduino boards using the C++ programming
language. It is an alternative to the XOD IDE, and can be used alongside
XOD (see p79).

ARDUINO UNO The Arduino UNO was the first USB-based Arduino board, consisting of
a microcontroller chip, printed circuit board (PCB) and a series of digital
and analog input-output pins to connect shields and external hardware.
The Arduino UNO R3 is the third revision of this board, and is what the
Seeduino and Grove board are based upon.

ATMEGA328P The Atmega328P is the microcontroller chip used in the latest versions of
the Arduino board, including the Grove board.

BAROMETER A barometer device measures air pressure, and can therefore be used to
monitor or forecast weather, or to measure altitude.

BIOMAKER Biomaker is an initiative run by the University of Cambridge Synthetic
Biology IRC and OpenPlant that focuses on training and providing funding
and resources for researchers interested in the intersection of biology,
engineering and computing. Biomaker activities include the annual
Biomaker Challenge and No-Code Programming for Biology training.

BREADBOARD Breadboards are simple devices for developing and prototyping electrical
circuits, without the need for soldering. They consist of rows of sockets
that are connected via electrical wiring. Components can be plugged
directly into these sockets using wires or metal pins. Any devices plugged
into the same row of sockets will be connected together.

BREAKOUT BOARDS Breakout boards are used to make wiring of electronic components easier.
They usually consist of a small PCB board with a single, or small number
of electronic components attached. For example, an LED or OLED Screen
breakout board. They can be easily attached to a development board via
wires, pins and sockets, or plugs.

PAGE: 91 // 96

BUS (XOD) In computing a bus is a communication system that transfers information between computers, or between different parts
of the same computer. In XOD, we can use buses to transfer information between one part of our patch and another,
without having to connect them via links. This is done using the to-bus and from-bus nodes to send information to, and
receive information from a particular bus.

COMMUNICATION A communication protocol is the method by which two or more electronic components exchange data. Ethernet, wi-fi and
PROTOCOL bluetooth are all examples of communication protocols. Different components use different communication protocols

(e.g. analog, digital, I2C) and so will need to be connected to the Arduino board in different ways.

DEBUGGER (XOD) The Debugger is XOD’s simulator function. It can be used to simulate your patch, or to edit and ‘debug’ your patch after
upload to the board. You can start the debugger using the ‘Simulate’ button, or using the ‘Upload and Debug’ button to
upload the patch at the same time. In debugger mode, you can use tweak and watch nodes to edit and monitor your
patch in real-time (see Task 3 p33-35).

DEVELOPMENT BOARD A microcontroller development board, like the Grove Arduino board, houses a microcontroller chip on a small PCB board
along side some additional parts and connections making it easy for anyone to programme and connect components to
a microcontroller at home. Development boards are intended to be cheap and easily accessible, and are often used for
developing prototypes and custom instruments.

DEVELOPMENT HOST A development host is the device you will use to write and develop the programme you want to install on the development
board. To programme the Grove board you will use a laptop or PC as the development host.

DIGITAL Digital signals, unlike analog signals, can only take finite and discrete values. For example, an LED can be ‘on’ or ‘off’.
Digital signals can be made to behave in a similar way to analog signals, for example, you can change the brightness of
an LED, but ultimately there are a finite and discrete number of values that the brightness of an LED can take. Computers
use digital signals, and most electronic components are digital. For example, screens, buttons, and some types of sensor.

GROVE Grove is toolkit of easy-to-use Arduino-compatible electronics. It uses a ‘plug-and-play’ system of modules that can be
easily fitted together to build custom devices. It is developed by the company Seeed Studio.

HACKSTER Hackster is an online platform for recording and sharing electronics projects. It provides a simple way to document and
browse projects, and has a large community of contributors, including companies such as Arduino and Seeed Studio.

HEADER SOCKETS The header sockets (also known as female headers) are connectors that are wired to the PCB board and provide "female"
sockets. They give us a way to easily connect external components to the board, either via male-to-male hook-up wires,
or via an expansion shield.

HOOK-UP WIRES Hook-up wires (also known as jumper wires or jumper cables) are used to connect components to the Arduino board and
come in several different types. Female-to-female hook-up wires have connector sockets at each end that plug into metal
pins on components, on the Arduino board, and on shields. Male-to-male wires, which have metal pins on each end that fit
into female sockets, header sockets or breadboards. Male-to-female wires that have a female socket at one end and a
male pin at the other end. Hook-up wires can also come pre-fitted with plugs to fit into compatible sockets. For example
Grove plugs or Open Smart (JST-XH) plugs.

HYGROMETER Hygrometer devices are used to measure humidity, i.e. the amount of water vapour present in the air or in soil.

I2C Inter-integrated circuits (I2C) are a digital communication protocol used to communicate with multiple devices at once.
With I2C communication several devices can be connected to the same pin of the microcontroller, and each device is
given a “name” digitally (known as an address). Addresses are written as XXh, with XX being a two digit code of numbers
and letters. For example 19h or 3Ch.

INSPECTOR (XOD) In XOD, the Inspector pane is the place where a nodes can be edited. For example, you can change the parameters of a
node’s pins, change the name of a node, or add a description. You must click on a node in the patch for these options to
appear. The Inspector pane appears on the left hand side of the screen below the Project Browser pane, and can be
toggled on and off using the slider bar button in the top left, or by navigating to ‘View > Toggle Inspector’ in the menu bar.

LED A light-emitting diode (LED) is a bright, low-power light source that generates light by passing a current through a
semiconductor diode.

PAGE: 92 // 96

No-Code Programming for Biology | Beginner’s Guide

Glossary

LIBRARY (XOD) In XOD (and in other coding software such as Arduino), libraries are
collections of ready-to-use nodes (or code). They are often designed to
help you use a specific piece of hardware (e.g. wayland/bmp280-
barometer) or as a collection of nodes with similar functions (e.g.
xod/math). The XOD IDE has several libraries pre-installed, but you can add
more libraries using the ‘Add Library’ button (books with a + symbol, in the
Project Browser) or by navigating to ‘File > Add Library...’ in the menu bar.

M5STACK M5Stack is a hardware company which provides it’s own wi-fi and
bluetooth enabled development system, as well as a series of Grove-
compatible components called ‘units’.

MICROCONTROLLER A microcontroller is a small low-power computer embedded into a device.
In contrast to a general purpose computer like a laptop or PC,
microcontrollers are often designed to complete one task and run one
specific programme. The Grove Arduino board contains a reprogrammable
microcontroller so you can upload your own programme on to the board
and create your own devices.

NO-CODE PROGRAMMING Node-code programming is an increasingly popular mechanism allowing
people to programme hardware and software using a graphical user
interface, rather than requiring them to learn and write text-based code.
The Biomaker No-Code Programming for Biology initiative has adopted no-
code and low-code programming as a way to train biologists, and others
with little or no coding experience, to build their own custom devices.

NODE (XOD) In XOD nodes are used as "a visual representation of a physical device or
function". They can represent an electronic component, a mathematical
function or any number of other functions that a computer can
perform. They appear on a patch as a dark grey box outlined in white, with
the name of the node printed in the middle. They may have small coloured
circles (pins) on the top and bottom which represent inputs and outputs.

OLED SCREEN Organic light emitting diode (OLED) screens are an alternative to LCD
screens used mainly for TVs. Instead of having a backlight to illuminate
pixels, each pixel can produce its own light. This can improve contrast.

OPEN SMART OpenSmart is a group of technology companies interested in
the production and development of open-source hardware. They are based
in Shenzhen, China. Open Smart components are used in the Biomaker
Expansion Kit.

PATCH (XOD) In XOD a patch is the working area in which a programme is built. It is
similar to a document or source file in other systems, but instead of text
code the patch is built with nodes.

PCB A printed circuit board (PCB) is composed of a thin fibreglass board with
conductive tracks of copper etched on the surface or between the layers.
They are used to connect electrical components, which are usually
soldered onto the board.

PHOTORESISTOR A photoresistor or light dependent resistor (LDR) is a component that is
sensitive to light. When light falls upon it then the resistance changes, and
this change is used as an electronic signal.

PIEZOELECTRIC BUZZER Piezo buzzers are simple devices that can generate basic beeps and tones.
They work by using a piezo crystal, a special material that changes shape
when voltage is applied to it. If the crystal pushes against a diaphragm, it
can generate a pressure wave which the human ear picks up as sound.

PAGE: 93 // 96

PIN (ARDUINO) In electronics, "pin" is used to refer to the electrical contacts on a component, i.e. the parts of a component that are used
to connect to other components. On the Grove board, the microcontroller chip has a number of pins that are connected to
both the components on the board, and to the Grove sockets and header sockets of the central module, which allows
them to communicate with additional components. In XOD the Arduino pins are referred to as "Ports" to avoid confusion
with XOD pins.

PIN (XOD) In XOD "pin" is used to refer to the inputs and outputs associated with a specific node. They appear as small round circles
on the top (input pins) and bottom (output pins) of a node. Pins are coloured according to their data type.

POTENTIOMETER Potentiometers (often shortened to "pot") are variable resistors that allow you to alter the resistance, and therefore the
current flowing through a circuit, without the need to reprogram the device. They are often found in the form of a knob,
slider or screw.

PROJECT BROWSER The XOD Project Browser is where you will find the current project you are working and libraries you have installed. Under
(XOD) the ‘My Project/[name of your project]’ dropdown you will find all of the patches (or files) in your project. Below that is a

list of libraries. Clicking on the dropdown button of a library will allow you to browse the nodes in that library. Dragging a
node from the Project Browser into the patch will add that node to your patch. At the top of the Project Browser are the
‘New Patch’ and ‘Add Library’ buttons. The Project Browser pane appears on the top left of the screen, and can be toggled
on and off using the hub button in the top left, or by navigating to ‘View > Toggle Project Browser’ in the menu bar.

QUICK HELP (XOD) The Quick Help pane in XOD is where you can find information about a node and it’s pins. When you click on a node
information about that node and it’s pins will appear in the Quick Help pane. The Quick Help pane appears on the top right
of the screen, and can be toggled on and off using the question mark button in the top right, or by navigating to ‘View >
Toggle Quick Help’ in the menu bar.

SEEED STUDIO Seeed Studio is an open-source hardware company. They developed the Seeduino Lotus development board (based on
the Arduino Uno R3 development board) and the Grove system of components which use plugs to easily connect
modules.

SHIELD Shields are modular circuit boards that piggyback onto your Arduino to instil it with extra functionality. Shields can have
specific functions, such as a wifi shield that will allow your board to transfer information via wifi, or can have more
general functions, like an expansion or prototyping shield. These allow you to easily connect any number of custom
components. Some shields can be stacked on top of one another to create combinations of modules and functions.

SPARKFUN SparkFun is an open-source hardware company that provide a range of development boards and components, as well as
tutorials and learning resources on programming, electronics and working with hardware.

TERMINALS (XOD) XOD terminal nodes (input and output nodes) are used to allow a patch to communicate with ‘the-outside-world’. Adding
terminal nodes to a patch will allow that patch to be used as a node in other patches, with the names and types of the
terminals corresponding to the names and types of the pins on your new node.

USB DRIVER A USB driver is a piece of software that allows your computer’s operating system to communicate with external hardware,
such as a hard drive or a microcontroller development board like the Grove board. The Grove board uses the CP210 driver
from Silicon Labs, and you may need to download this driver in order to use your board.

XOD XOD is an open-source software company that provides the the XOD Integrated Development Environment (IDE). The XOD
IDE is free software that allows you to programme Arduino-based development boards using visual programming rather
than text-based coding. XOD software uses graphical nodes to represent functions, and nodes are connected together to
visualise data flow and programme hardware.

PAGE: 94 // 96

No-Code Programming for Biology | Beginner’s Guide

Index

A
3-Axis Acceleration Sensor 7, 11, 56-59, 87
Accelerometer (see 3-Axis Acceleration Sensor)
Adafruit 75, 85
Air Pressure Sensor 7, 11, 42-45, 82, 87
Analog Communication 10
Arduino

Boards 5-9, 84
IDE 79
Website 85

B
Bacterial Culture 83
Barometer (see Air Pressure Sensor)
Behaviour Chamber 81
Biomaker i, 2, 5, 85
Biomedical Research 81
Bioreactor 83
Bluetooth 80
Boolean Pin 15
Breadboard 76
Breakout Boards 76
Button 6, 11, 20-25, 26-29, 86
Buzzer 6, 11, 26-29, 64-71, 86
Byte Pin 15

C
C++ 79
Camera 81, 82
Clearing the Board 25
Clock Node 36-41
CO2 Sensor 80
Components

Additional 75
Clashes 78
Inbuilt 6-7, 86-87

Concat Node 42-45
Contact Details 85
Count Node 36-41
Creating New Nodes 49-55

D
Digital Communication 10
Documenting Nodes and Libraries 55

E
Electronic Wiring 76

F
Finding XOD Nodes 79
Flip Nodes 36-41
Format-Number Node 42-45
Fritzing 85

G
Gas Sensor 80
Grove

Beginner Kit for Arduino (see Grove Board)
Board 5, 6

PAGE: 95 // 96

G (CONT.)
Grove (Cont.)

Components 75, 77
Seeduino 6
Website 85

H
Hackster 5, 8, 85
Hygrometer (see Temperature and Humidity Sensor)

I
I2C Communication 10
Instructables 85

J
Join Node 42-45

L
LCD Screen 81, 83
LED 6, 11, 20-25, 36-41, 83, 86
Light Sensor 7, 11, 60-63, 81, 83, 87
Logic Nodes 60-63, 64-71

M
M5Stack 75
Making New Nodes (see Creating New Nodes)
Microcontroller 6-9
Moisture Sensor 80
Motor Driver 81, 83

N
New XOD Nodes (see Creating New Nodes)
No-Code Programming for Biology

Beginner’s Guide 2, 4
Biomaker Website 5, 85
Handbook 4
Starter Kit 6
Tutorials 19

Nodes (see XOD nodes)
Number Pin 15

O

OLED Screen 6, 11, 50-55, 56-59, 60-63, 82, 86
Open Smart 75, 77-78, 85
OpenPlant i, 85

P
pH Sensor 83
Pin Connections 11
Plant Monitor 82
Port Pin 15
Processing 85
Publishing Libraries 55
Pulse Pin 15, 41

R
Raspberry Pi 82, 84
Reset (see Clearing the Board)

R (CONT.)
Rotary Potentiometer 6, 11, 26-29, 86

S
Screen

LCD (see LCD Screen)
OLED (see OLED Screen)

SD Card 82
Seeed Studio (see Grove)
Seeeduino (see Grove board)
Shields 76-78
Soil Sensor 80
Sound Sensor 7, 11, 50-55, 87
SparkFun

Components 75
Tutorials 10, 76, 84
Website 85

String Pin 15
Synthetic Biology IRC i, 85

T
Temperature and Humidity Sensor 7, 11, 34-35, 80, 82, 87
Troubleshooting 25
Tutorials

No-Code Programming
for Biology 19
XOD 45

Tweak Nodes 33-35

U
USB Driver 19

W
Watch Node 33-35, 41
Wiring (see Electronic Wiring)

X
XOD

Buses 56-59
Comment Boxes 71
Data Types 15
Debugger 33-35
Guide 45
IDE 5, 12-13, 19
Library 12

Documenting Libraries (see Documenting Nodes and Libraries)
Publishing Libraries (see Publishing Libraries)

Links 14
Nodes 14, 21, 41, 45

Documenting Nodes (see Documenting Nodes and Libraries)
Finding Nodes (see Finding XOD Nodes)
List of Nodes Used
New Nodes (see Creating New Nodes)

Pins 14
Software (see XOD IDE)
Terminals 49
Terminology 14
Tutorials 45
Website 5, 85

PAGE: 96 // 96

No-Code Programming for Biology | Beginner’s Guide

Acknowledgements

CONTACTS

Stephanie Norwood
synbio@hermes.cam.ac.uk

Jim Haseloff
jh295@cam.ac.uk

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License.

IMAGES

Stephanie Norwood
SparkFun Electronics, Inc.
Adafruit Industries, LLC
Biomaker Challenge Participants

AUTHORS

Stephanie Norwood
Jim Haseloff

DESIGN

Stephanie Norwood

HARDWARE

Seeed Technology Co.,Ltd.
Arduino S.r.l.
Adafruit Industries, LLC
M5stack-store
OpenSmart Tech.
Spark Fun Electronics, Inc.

FUNDERS AND SPONSORS

Biotechnology and Biological Sciences Research Council (BBSRC)
Engineering and Physical Sciences Research Council (EPSRC)
Natural Environment Research Council (NERC)
OpenPlant
Synthetic Biology Interdisciplinary Research Centre (SynBio IRC), University of Cambridge
National Science Foundation (NSF)

SOFTWARE

XOD, Inc.
Arduino S.r.l.
Hackster, Inc.

XOD LIBRARY CREATORS

Matt Wayland
Marco Aita
Cesar Sosa
XOD user: gst
XOD user: e
XOD user: gweimer

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Designed for those with little to no experience working with
coding or hardware, this guide makes use of free open-source
software and low-cost hardware to introduce you the principles
behind making your own instruments.

Learn how to:
• Understand and control an Arduino board
• Programme without using code
• Use simple electronic devices such as screens and sensors
• Build your own devices for use in biological research

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

	Title Page
	Contents
	Lesson 1: Introduction
	The Guide
	The Starter Kit
	The Microcontroller
	The XOD IDE
	Lesson 2: Getting Started
	Setting up your Board
	Task 1: Testing Your Board
	Task 2: Input and Output Devices
	Lesson 3: Explore XOD
	Task 3: Tweak and Watch Nodes
	Task 4: Flip, Clock and Count Nodes
	Task 5: Concat, Join and Format-Numebr Nodes
	Lesson 4: Building Devices
	Task 6: Creating New Nodes
	Task 7: Using Buses
	Task 8: Logic Programmes
	Task 9: Sequences and Loops
	Lesson 5: Next Steps
	Expanding Your Capability
	Additional Information
	Glossary
	Index
	Acknowledgements

