
No-Code Programming
for Biology

Rapid Prototyping
Beginner’s Guide
Second Edition

Biomaker Team
University of Cambridge

No-Code Programming
for Biology

Rapid Prototyping
Beginner’s Guide 2nd edition

Jim Haseloff, Stephanie Norwood & Matt Wayland

Learn how to:

• Understand and control an Arduino board
• Program without using code
• Use simple electronic components such as screens and
sensors
• Build your own devices for use in biological research

ISBN-978-1-7394029-0-7

Published 2023

III

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Biomaker was started in 2014 as an interdisciplinary scheme for project-based learning and
innovation, was founded by Jim Haseloff as part of the Engineering Biology Interdisciplinary
Research Centre at the University of Cambridge and OpenPlant, one of the UK’s six National
Synthetic Biology Research Centres. It has been funded mainly by contributions from the UKRI
research councils in the UK, from BBSRC, EPSRC and NERC grant programmes. It has also
received sponsorship for workshop materials from Seeed Studio.

Biomaker has provided funding for interdisciplinary team-based projects at the intersection of
electronics, computer science, 3D printing, sensor technology, low cost DIY instrumentation
and biology, as well as workshops and outreach events. The initiative aims to build open
technologies and promote development of research skills and collaborations. It taps into
existing open standards and a rich ecosystem of resources for microcontrollers, first
established to simplify programming and physical computing for designers, artists and
scientists. These tools allow biologists to program and develop real-world laboratory tools.
The Biomaker project also provides a direct route for physical scientists and engineers to get
hands-on experience with biological systems.

We aim to lower the barriers that impede interdisciplinary work, and to promote the kinds of
training that are useful for building instruments and devices for biological experiments in the
lab and field. We develop starter kits for no-code programming that allow biologists to build
bioinstrument prototypes for measurement and control of biological systems. These have a
wide range of applications including instrumentation, microscopy, microfluidics, 3D printing,
biomedical devices, DNA design, plant sciences and outreach and public engagement. You can
find examples of documented projects on the Biomaker website at www.biomaker.org.

An important aspect of Biomaker is the use of open source and low cost tools and hardware,
which facilitate equitable access to fundamental knowledge and technology, encourage a
collaborative environment, and support the establishment of an open, sustainable
bioeconomy.

Biomaker Initiative

IV

This second edition of the
Beginner’s Guide to Rapid
Prototyping has been put
together by the Biomaker team
to help you get to grips with the
basics of rapid prototyping and
building custom instrumentation
for biological research.

We have extended the no-code
programming tutorial material
laid out in the first edition by
Steph Norwood, and included
more material on hardware
expansion and building
prototypes.

Designed for readers who might
have little or no experience with
text-based coding or hardware,
this guide makes use of free
open-source software and low-
cost hardware to introduce you
the principles behind making
your own instruments.

Working though this guide can
be useful as a base for those
with a specific challenge or task
in mind, as well as for those who
are simply looking to expand
their skillsets for experimental
design.

While we focus on learning
aspects that are useful for
biological research, the

information in this guide can also
be used for a wide range of no-
code programming applications,
and we hope that these skills can
be applicable whatever your area
of interest.

The guide will teach you how to
use the free open-source, no-
code programming software
XOD, as well as how to use some
simple low-cost hardware
devices, such as LEDs, sensors
and screens.

The training material is built to
accompany the integrated Grove
All-In-One Beginner Kit for
Arduino development board,
designed by Seeed Studio. At the
time of writing, the kit is available
from global stockists for
approximately £20/$25.
Alternative versions of the
Arduino Uno board and
accompanying components can
also be used, but you will need to
wire-up these components as
you go.

In this 2nd edition of the guide, we
also describe how to extend this
basic set of integrated
components with new external
devices.

Jim Haseloff.

AUTHORS
Jim Haseloff
Stephanie Norwood
Matt Wayland

IMAGES
Jim Haseloff
Stephanie Norwood
SparkFun Electronics
Adafruit Industries
Seeed Studio
Biomaker Challenge Participants

XOD LIBRARY CREATORS
Matt Wayland
Marco Aita
Cesar Sosa
XOD user: gst
XOD user: e
XOD user: gweimer

CONTACT
Jim Haseloff
jh295@cam.ac.uk

Welcome to
No-Code Programming
for Biology

This work is licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License.

V

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Lesson 1: Introduction
Introduction 2
The Guide 4
The Starter Kit 6
The Microcontroller 8
The XOD IDE 12

Lesson 2: Getting Started
Getting started 18
Setting up your board 19
Task 1: Testing your board 20
Task 2: Input and Output devices 26

Lesson 3: Explore XOD
Explore XOD 32
Task 3: Tweak and Watch nodes 33
Task 4: Flip, Clock and Count nodes 36
Task 5: Concat, Join and Format-Number Nodes 42

Lesson 4: Building Devices
Building devices 48
Task 6: Creating new nodes 49
Task 7: Using Buses 56
Task 8: Program logic 60
Task 9: Sequences and Loops 64

Embedded Hardware
Embedded hardware 72
XOD nodes for the embedded hardware 74

Lesson 5: Next Steps
Next Steps 84
Hardware expansion 85
Documenting circuit construction 90
Hardware stands 92
Connecting external hardware 94
Electrical connections 96

Contents

VI

External Components
16x2 character LCD screen 98
Ring of RGB LEDs (WS2812) 102
Real time clock (DS1302) 106
Humidity and light sensor (SHT20) 110
Light sensor (BH1750) 114
Colour sensor (TCS3472) 118
Laser range-finder (VL6180X) 122
Temperature sensor (MCP9808) 126
IR Motion sensor (HC-SR501) 130
Microwave radar proximity sensor (RCWL-0516) 134
Weight sensor (HX711) 138
Water quality sensor (TDS meter 1.0) 142
Water level sensor 146
Soil moisture sensor 150

Software Expansion
Software expansion 155
Creating a XOD library for the TSL2591 light sensor 156
Testing the Arduino library 158
Creating a device node 160
Device C++ code 162
Documenting the device node 163
Creating a set-timing node 164
Set-timing C++ code 166
Creating a quick-start node 167
Example patches 168
Publishing your library 169
Useful software resources 171

Case Studies
Case studies 172
Example: the AirFlow reactor 176
Additional Information 190

Glossary 192

Index 196

Acknowledgements 198

VII

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

1

Lesson 1:
Introduction

The Guide

The XOD IDE

The Microcontroller

The Starter Kit

2

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Biomaker and
No-Code Programming for Biology

Introduction

The Biomaker team has put together this guide to introduce biologists, or
other scientists with little formal programming training, to the basics of
Biomaking, including:

• Use of Arduino-based microcontrollers
• Use of sensors, displays and actuators
• Use of XOD visual programming

These new skills can be enabling in many ways. Scientists can gain expertise
and new ways of thinking to apply to their work. Moreover, the components for
this type of instrumentation are often very cheap, especially when compared
with off-the-shelf commercial solutions. The use of simple hardware and
software resources allow easy modification, extension and repair of custom
instruments, and the use of open-source components and systems promotes
sharing of information and set up of collaborative projects. This creates a
growing set of resources for the community to draw from, and build upon.

We hope that you enjoy taking part in this online course, that you learn
something new and that you find it useful for your future career. Most of all, we
encourage anyone who is interested in developing their skills further to sign up
for a Biomaker Challenge, where you can join a team of like-minded scientists
and engineers to build bioinstruments for real-world applications.

3

In this first lesson we will cover some of the basic background information you will need to
know before you start programming.

First, we will take a look at this guide and how to use it. Then we will look at the Grove board
and explore each of it’s built-in devices, including how they might be used. Next, we will briefly
discuss microcontrollers and how to programme them, and finally we will introduce you to the
XOD IDE software and some of it’s terminology.

These basics will help you to become familiar with the tools we will be using throughout this
guide. Many of these concepts will be covered again as we apply this knowledge to perform
hands-on tasks later in this guide.

OBJECTIVES

By the end of this chapter you should be able to:

• Name the different parts of the Grove board and give examples of how they might be used.
• Describe the basic concepts of a microcontroller.
• Describe the steps involved in programming the Arduino board and how information is

transmitted in this system.
• Name three of the most common types of electronic communication and explain the

difference between them.
• List the pin (port) connections for each of the board’s components.
• Recall the different parts of the XOD IDE software and describe what each part is used for.
• Recount the three key terms used in XOD programming and what they mean.
• List the data types used in XOD and give examples of each.

The Grove All-in-One Beginner Kit for Arduino

4

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

The Guide

This chapter will give you a
brief introduction to the
Biomaker starter kit,
including the Grove board,
how to control it, and how to
use XOD.

This chapter will take you
through a few simple tasks
to get started with using
your board and the XOD IDE.
You’ll learn to use the LED,
buzzer and button devices.

This chapter will explore
some of the most useful
functions of XOD.
Understanding how to use
these functions will give you
a great base to work from.

This chapter will delve into
some more complex
functions in XOD. By the
end, you should be able to
start developing your own
ideas, programmes and
devices!

Getting
Started

Explore
XOD

Building
DevicesIntroduction

The guide is split into four core lessons, each described
below. These lessons are designed to be worked through in
order, and start by exploring the Biomaker starter kit and the
XOD integrated development environment (IDE). The rest of
the guide will then take you through a series of tasks
designed to introduce you to your board, as well as some key
aspects of programming in XOD.

The final chapter provides some additional useful
information, as well as some details about how to expand
your skills and get started with designing your own devices.

In addition to the information in this guide, the XOD website
also provides some useful tutorials and a community forum
where you can find help at www.xod.io

The No-Code Programming for Biology Handbook
In addition to this beginner’s guide, the Biomaker team has also created a range of useful beginner and advanced resources
available on the Biomaker website. These resources are designed to help you learn more about the possibilities of Biomaking
and to expand your capability to start building your own devices. They include additional tutorials, videos and information about
commonly used hardware and expansion devices.

All of the Biomaker and No-Code Programming for Biology resources are available to download on the Biomaker website at
www.biomaker.org/resources.

5

Tools to Accompany the Guide

GROVE BEGINNER
KIT FOR ARDUINO

BIOMAKER
WEBSITE

The Biomaker starter kit is composed of this beginner’s guide, and the Grove Beginner
Kit for Arduino. This kit is made by the open source hardware company Seeed Studio
and is based on a simple Arduino microcontroller. The kit comes as an integrated PCB
board with several useful input and output devices already connected and ready to go.
No soldering, wiring or connecting of components means it’s perfect for getting started
with hardware!

The Starter Kit section provides a quick summary of each part of the board and what it
might be used for, whilst the Microcontroller section gives a little background on the
Arduino board.

The Biomaker website (www.biomaker.org) hosts a variety of useful materials,
including digital downloads of this guide, the accompanying tutorial file, and a number
of other Biomaker tutorials and handbooks. These can be found under the ‘Getting
Started’ tab.

You can also find examples of previous Biomaker projects on the website under the
‘Projects’ tab. With over 180 projects so far, there is plenty of inspiration for the
budding Biomaker. Projects are also documented on the Biomaker Hackster Hub
(www.hackster.io/biomaker).

XOD IDE

XOD WEBSITE

The XOD integrated development environment (IDE) is a free open-source software
that allows you to programme microcontroller-based devices, such as Grove or
Arduino boards, using visual ‘nodes’ rather than written code. Nodes can represent
devices or functions, and by linking them together in different ways you can create a
wide variety of different programmes. Programming visually like this can save some of
the time and energy required to learn a new language and large amounts of syntax.

The XOD IDE section provides a quick summary of the different parts of the XOD IDE,
and what you’ll see when you first load the software, as well as some useful
terminology used in XOD programming.

The XOD website (www.xod.io) provides plenty of useful information for beginners,
including tutorials and a user guide under the ‘Documentation’ tab, a database of
libraries under the ‘Libraries’ tab, and a very helpful forum under the ‘Community’ tab.

6

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

The Starter Kit

2

3

4 5

1

11

The Biomaker starter kit is composed of this
beginner’s guide, and the Grove Beginner Kit for
Arduino. This kit is made by the open source
hardware company Seeed Studio and is based on a
simple Arduino microcontroller.

LED
A red light emitting diode (LED). This
light can be used as a notification or
warning signal in devices.

1

BUZZER
Inbuilt piezoelectric buzzer. Can be
programmed to emit tones at different
frequencies.

2

OLED SCREEN
High quality OLED screen, which can
be used to display both images and
text. It is a 64x128 pixel matrix which
can display desired content in
monochrome (black and white).

3

BUTTON
A simple button that responds to user
input (presses). Can be used as an
on/off switch or trigger.

4

ROTARY
POTENTIOMETER
Also known as a knob sensor as it
senses the rotation angle of the knob.
Can be used as a dial to change
volume or brightness.

5
MICROCONTROLLER
DEVELOPMENT BOARD
Based on the Arduino Uno and Seeeduino Lotus
development board, this module is the brains of the
board.

An ATmega328P microcontroller chip lies at the core,
acting as small low-power computer that can be
reprogrammed to create whatever device you wish.

11

7

6 7

8

9 10

LIGHT SENSOR
A photoresistor that can detect incident
light intensity in the environment.6

The kit comes as an integrated PCB board with several useful input and output devices already
connected and ready to go. No soldering, wiring or connecting of components means it’s perfect
for getting started with hardware!

Below is a quick summary of each component on the board and what they might be used for:

SOUND SENSOR
A simple microphone that can detect the
sound intensity in the environment.7

TEMPERATURE AND
HUMIDITY SENSOR
Also known as a hygrometer. A pre-
callibrated digital sensor that can measure
environmental temperature and humidity.
Will not work below 0ºC.

8

AIR PRESSURE
SENSOR
Also known as a barometer. A high-
precision digital sensor that can measure
both air pressure and temperature. Can
also be used to measure altitude.

9

3-AXIS
ACCELERATION
SENSOR
Also known as an accelerometer, which
senses movement of the board. It can be
used to measure orientation, tilting,
movement or gestures.

10
The white plug sockets in the centre and yellow header sockets
around the edges can be used to plug in additional components.

This module also has a reset button to reset your programme at any
time, and a micro USB port, to connect the board to your computer.

A USB cable is provided in the right-hand compartment of the Grove
box, and Grove cables (to connect components to the white sockets)
are provided in the left-hand compartment of the Grove box.

8

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

The Microcontroller

What is a Microcontroller?

A microcontroller is a small low-power computer
encapsulated in a tiny electronic chip. In contrast
to a general purpose computer like a laptop or PC,
microcontrollers are often designed to complete
one task and run one specific programme. They
are low cost and only require small amounts of
power, so they are often used in simple electronic
devices such as kitchen appliances, implantable
medical devices and power tools.

Like any other computer, a microcontroller has a
Central Processing Unit (CPU), a ‘long-term’
memory (Electrically Programable Read Only
Memory, EPROM) for holding your programme,
and a ‘short-term’ memory (Random Access
Memory, RAM) for holding and accessing user
data. It communicates with the outside world via
a series of metal pins that can either send
(output) or receive (input) information.

The ATmega328P
microcontroller used
in the Arduino board

A microcontroller development board, like the Grove Arduino board, houses a
microcontroller chip on a small PCB board alongside some additional parts
and connections making it easy for anyone to programme and connect
components to a microcontroller.

Development boards are intended to be cheap and easily accessible, and are
often used for developing prototypes and custom instruments. To get an idea
of the wide range of projects that are possible to achieve using an Arduino
development board, take a look at the project documentation platform
Hackster at www.hackster.io/Arduino.

Location of the ATmega328P microcontroller on the Grove board (red circle)

9

Controlling Your Arduino Board

In order to tell the Grove board what to do you will need to plug it into a computer. This is
referred to as the development host, as it is where you will write and develop the programme
you want to install. The diagram below explains how information is transferred from your
computer to the board. Once the programme has been transferred, the board can be
disconnected and will be able to run the desired programme independently of your computer,
although it will need an alternative power supply. The board can be programmed to perform a
multitude of different tasks depending on what components you want to use, and what
programs you install.

Workflow for programming your Arduino board

Write your programme using XOD software

Upload your programme

Information is sent from the computer to the Grove board via a USB cable

Information is received by the Grove board

The programme is written to the EPROM (long-term) memory of the
microcontroller chip. This allows the board to act as its own independent
computer, carrying out the specific programme you have uploaded.

Information is sent to the onboard components via the microcontroller pins. The
programme stored in the microcontroller's memory will tell the components what
to do, for example, turn on the buzzer at a certain pitch.

1
2
3
4
5

6

10

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

The Microcontroller

Types of Communication

There are several different ways for the board to communicate with your
components. These are known as communication protocols, and they are the
different ways in which data can be transferred between devices. Which pin is
connected to which device depends on what type of communication protocol
is used, and that depends on the type of device. Below we describe the three
types of communication that are used on the Grove board.

It is important to be aware of these different communication types, as they will
determine the board’s pin connects (see next page), as well as how to plug in
any additional components you would like to add to your board.

Analog sockets are used to connect analog input and
output devices. They can transmit signals that are
continuous (meaning they can have an infinite amount
of values within a given range), unlike digital sockets
which can only transmit signals in two states: on and
off. Most sensors are analog sensors.

Digital sockets are also used to connect input and
output devices. However, unlike analog devices, digital
devices cannot take a range of values, they can only
communicate by switching between two states: on and
off. These digital sockets are used for most non-sensor
components.

This covers three pin types used to connect the Grove board’s inbuilt
components. Arduino boards are also able to connect to devices using two
other communication protocols, known as UART and SPI. We will not use
these communication types in this guide, but if you would like to learn more
you can find an excellent tutorial comparing I2C, UART and SPI protocols on
the SparkFun website at www.learn.sparkfun.com/tutorials/i2c.

For devices which deal with both inputs and outputs we
need duplex communication protocols, which can
transmit data in both directions. The duplex protocol
used on the Grove board is I2C.

Inter-integrated circuit (I2C) pins provide a way to
communicate with multiple devices at once. In this
case, several devices are connected to the same pin,
and each device is given a “name” (known as an
address). Addresses are written as XXh, with XX being a
two digit code of numbers and letters. For example 19h
or 3Ch.

ANALOG

I2C

DIGITAL

11

Pin Connections

Once your programme has been uploaded to the microcontroller chip, the chip needs to
communicate with the board's components. Information can either be sent as an output from
the microcontroller to the components, or received by the microcontroller as an input from a
component.

Each device on the board is connected to both to the power source and to one or more of the
pins (also known as ‘ports’) on the microcontroller chip. This allows the microcontroller to
communicate with the components. It is important to know which component is connected to
which pin, as we will need to use this information when we are programming.

The table below outlines which onboard devices are connected to which pins.

PIN DEVICE

A0 Rotary Potentiometer

A2 Sound Sensor

A6 Light Sensor

D3 Temperature and Humidity Sensor

D4 LED

D5 Buzzer

D6 Button

I2C (19h) Three-Axis Accelerator

I2C (77h) Air Pressure Sensor

I2C (3Ch) OLED Screen

12

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

2

4

5

3

The XOD IDE The XOD integrated development environment
(IDE) is a free open-source software that allows
you to programme microcontroller-based
devices, such as Grove or Arduino boards, using
visual ‘nodes’ rather than written code.

2
The four buttons to the left of the
Project Browser represent (from left-
to-right):

ADD PATCH
Lets you add a new patch to your
project.

ADD LIBRARY
Lets you install new libraries. You can
download libraries that other users
have made to expand the number of
nodes available.

FILTER
Lets you filter what libraries and
nodes you can see.

PROJECT BROWSER MENU
Lets you minimise or move the Project
Browser pane.

YOUR PATCH

The central part of your screen
displays the XOD patch you currently
have open. A patch is a space for you
to create your programme. It is like a
file in another programme, and can be
used to create one small programme,
or one section of a larger programme.
You can create multiple patches and
store them together in a project.

When you first open the XOD IDE You
will see a project called ‘welcome-to-
xod’. This is a pre-installed tutorial
from XOD. You can create a new
project by navigating to ‘File > New
Project’ in the menu bar.

1

QUICK HELP

The quick help pane provides information
about whatever node you have selected at
the time. Click on a node to see information
about what it does and what each of it’s
inputs and outputs (‘pins’) do.

You can toggle this pane on and off using the
question mark button at the top right of the
screen.

6

13

6

7

Nodes can represent devices or functions, and by linking them together in different ways you
can create a wide variety of different programmes. Programming visually like this can save
some of the time and energy required to learn a new language and large amounts of syntax.

Below is a quick summary of the different parts of the XOD IDE, and what you’ll see when you
first load the software.

5 INSPECTOR

The Inspector pane shows
information about the node or patch
that you have selected at the time.
This is where you will input
information and change the properties
of your nodes (e.g. you can tell the
programme which of the
microcontroller’s ports your
component is connected to).

This pane also contains the Label and
Description boxes, which you can use
to help document your programs

4 PROJECT BROWSER:
LIBRARIES

The bottom half of the Project
Browser pane shows all of the
libraries you have installed. When you
first use XOD these will be limited to
the basic XOD libraries (e.g. xod/bits,
xod/core). Libraries with red icons
have an error somewhere in their
patches.

3 PROJECT BROWSER:
PROJECT PATCHES

The top half of the Project Browser
pane shows the project you have
open. If you click the drop down arrow
next to the project name you will be
able to see all of the patches within
your project.

7
The four buttons at the bottom of the
patch represent (from left-to-right):

UPLOAD TO ARDUINO
Upload your patch to the board.

UPLOAD AND DEBUG
Upload the patch, and watch what’s

happening on your screen at the same
time. Useful for testing programmes
and debugging.

SIMULATE
Simulate your programme without
hardware. Useful for getting started.

TOGGLE DEPLOYMENT PANE
Toggle the Deployment pane on and
off to see how the upload is working.

1

14

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

XOD Terminology

Nodes
Nodes are the building blocks of a programme in XOD.
Depicted as a black rectangle with white border, they
will display their name in the middle, and have a number
of small circular inputs and outputs on the the top and
bottom, known as pins. Nodes can represent any
number of things, from hardware (like a LED or sensor)
to mathematical or logical operations (like add, subtract,
and, or, if etc.).

Pins
In XOD, ‘pin’ refers to the inputs and outputs of a node,
which are represented as small circles. Input pins are
located on the top edge of a node, and output pins are
located on the bottom edge of a node. Pins can have
different data types (see next page) and are coloured
accordingly. The name of a pin will appear below the
circle, and the current value of a pin will appear above it.

Note: to avoid confusion with the ‘pins’ on the
microcontroller, XOD refers to these as ‘ports’, i.e. what
Grove refers to as ‘pin A0’ XOD refers to a ‘port A0’.

Links
Links are used to connect nodes. To create a link click
on an output pin from one node, and then on an input
pin from another node (or visa versa). Once a pin is
linked, the circle will change to a solid colour. Pins of
one data type can only be connected to certain other
types (e.g. a number pin can be connected to another
number pin, a string pin, or a boolean pin, but not a byte,
port or pulse pin). XOD will not let you connect pin types
that do not work together.

The XOD IDE

15

XOD Data Types

Port
Port pins represent the different ‘ports’
(microcontroller pins) on the board, i.e.
A0-A6 and D0-D13. We will use these
pins to tell hardware nodes which pin/
port the hardware is connected to.

String
Strings pins represent strings of text.
They are used to input text or read out
text. Usually this is text input by or to
be read by the user, e.g. text to be
displayed on a screen.

Pulse
Pulse pins are like triggers. They don’t
represent any specific type of data, but
they are used to signify when
something has happened, or to trigger
something to happen at a specific
time.

Boolean
Boolean pins represent logical
information, i.e. they can only be in two
states: True (on) or False (off). They
can be used like a switch, and are
often used when working with logic
nodes such as ‘and’ ‘or’ etc.

Number
Number pins are very simple: they
represent numbers. Numbers can be
integers or fractions in the range ±16
millions, and can display up to 6
significant digits.

Byte
Byte pins represent bytes, a
fundamental data type in computing.
They can be written in a variety of
ways, but we will use hexadecimals,
which contains two digits (0-9,A-F)
followed by h-suffix (e.g. 3Ch).

XOD has built-in data types that represent the different kinds of values that can be used in a program. Here are some of the
main data types in XOD:
• Number (num): This data type represents a floating-point number. It can be used for various purposes, such as storing

sensor readings, controlling the position of a servo motor, or setting the duration of a delay.
• Boolean (bool): This data type represents a binary value, either true or false. It is often used for conditional statements,

like checking if a button is pressed or if a sensor value exceeds a certain threshold.
• Pulse (pulse): This data type represents an event or a trigger. It is used to initiate an action, like starting a timer,

toggling an output, or triggering a sequence of events. Pulses do not carry any additional information other than the
fact that an event has occurred.

• String (string): This data type represents a sequence of characters, like text or messages. It can be used to store and
manipulate text data, display messages on an LCD screen, or send and receive data through serial communication.

• Byte (byte): This data type represents an 8-bit value, ranging from 0 to 255. It is often used when working with low-
level data, such as when communicating with a specific protocol or manipulating individual bits in a byte.

• Port (port): This data type represents a pin on a microcontroller board. It is used to configure and control input/output
pins, such as reading a digital signal, setting an output pin's state, or configuring a pin for PWM.

• Color (color): This data type represents an RGB color value. It can be used to control the color of RGB LEDs, create
color gradients, or manipulate colors in graphical displays.

Pins in XOD can take a number of different data types depending on what they represent. Each data type is represented by
a distinct colour. Below is a description of the six main data types in XOD. Custom data types are also available, but we will
not discuss these here. A comprehensive explanation of each XOD data type and how they interact can be found at www.
xod.io/docs/guide/data-types and www.xod.io/docs/reference/data-types respectively.

16

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

17

Lesson 2:
Getting Started

Input and Output devices

Setting up your board

Testing your board

Getting started
This chapter is all about how to get started with no-code programming and
using your board.

Beginning with ‘Setting up your Board’, you will learn how to set up your
computer, including how to download the XOD IDE, USB drivers and Biomaker
tutorial files.

This is followed by two tasks: ‘Testing your Board’ and ‘Input and Output
Devices’. In Task 1 you will use the XOD IDE to test your connection and
programme the simple LED on your board. In Task 2 you will learn how to build
a simple device using the button and buzzer modules on your board, as well as
expanding your knowledge of how to use XOD.

OBJECTIVES

By the end of this chapter you should be able to:

• Prepare your Biomaker starter kit by downloading the relevant software
and drivers, plugging in your board, and opening the XOD IDE.

• Name the different sections of the XOD IDE and understand what they are
used for.

• Apply your knowledge of the XOD IDE to perform the following simple
tasks: add a node, change pin settings, connect nodes, add a library.

• Use the XOD IDE to upload programmes to your board.
• Use the XOD IDE to clear programmes from your board.
• Use three of the inbuilt components on the Grove board: the LED, the

buzzer and the button.
• Understand how to troubleshoot your programme and find additional

help.
• Understand how input and output devices can be used together to build

simple devices.

The XOD welcome screen

18

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

19

Downloads

XOD

TUTORIALS

To download the free XOD software, simply visit www.xod.io and
download the desktop IDE from the XOD homepage. You will need to
download the correct IDE for your operating system (Windows, MacOS,
Linux etc.).

Note that a browser-based IDE is also available, but does not support
hardware, so is not suitable for use with this guide.

To accompany this guide, the Biomaker team has created a XOD tutorial
file. This file will allow you to work through the tasks in this guide within
the XOD environment.

You can choose to work through the tasks by using the step-by-step
instructions in this book, by using the XOD tutorial file, or by using a
combination of both.

If you chose to use the XOD tutorial file, we advise that you take the time
to read though the introduction and information at the start of each
chapter in this guide, otherwise you may miss out on useful information.

You can download the XOD tutorial file on the Biomaker website at:
www.biomaker.org/nocode-programming-for-biology-handbook.

USB DRIVER For your computer to communicate with your Arduino board it will need
to have the correct driver installed, in this case, a CP210 driver. Most
operating systems will already have the correct drivers installed,
including: Windows 7 and 10, Mac OSX v10.10.5 (Yosemite) to v10.15.5
(Catalina), Linux and Ubuntu v18.04.2, 64-bit.

If you are using one of the above systems we suggest ignoring this step
and continuing with the guide.

If you are using a different operating system, or are having trouble
connecting with your board, you may need to download a CP210 driver.
Downloads for most common operating systems are available from
Silabs at: www.silabs.com/products/development-tools/software/usb-
to-uart-bridge-vcp-drivers.

Setting up your board

Testing your board

Task 1: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (LED and Button modules)
• USB-A to micro USB cable

Now that you’ve downloaded the software you’re all set and
ready to get stuck in!

This task will walk you through how to connect your board to
the computer and upload your first programme using XOD.

We’ll be using the LED light in the top left corner of the board
to test our connection.

You may notice that when you first plug in the board the
OLED screen in the middle-left turns on. This is part of the
inbuilt demo mode on the board. You can learn more about
this in the Grove User Manual.

PLUG IN YOUR BOARD

1 2

OPEN THE XOD IDE

Open up the XOD software on your computer.

If you are using the tutorial file provided, open this file in
XOD. You can follow the instructions in patches
tuto101-tuto114 to complete this task.

Use the USB cable provided to plug your board into the
computer. You can find this cable in the right-hand
compartment of the Grove box. Plug the micro USB end
into the socket at the bottom of the central section of
the board, and the standard USB (USB-A) end into your
computer.

20

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

21

ADD AN LED NODE

3 4

SELECT THE NODE

Click on the led node.
The outer edge will turn
blue and more
information will appear
in the Inspector pane on
the bottom left.

Using the Project Browser on the top left, find the xod/
common-hardware library, click the dropdown menu
and find the node called “led”. Click on this node and
drag it into the patch. This is one of several ways to add
a new node. See the Adding Nodes to your Patch box for
more information on alternative methods.

Adding Nodes to your Patch
There are several different ways to add a node to your XOD patch, and which one you use is completely up to you!

1. DRAG FROM LIBRARIES
As described above. If you know the library the node is in, you can find the library in the Project Browser, click the
dropdown menu, click on the node, drag it into the patch and release.

2. DOUBLE CLICK ON THE PATCH
If you know the name of the node you want, or want to search for a node you can use the search bar. Double click
anywhere in your patch and the search bar will appear. Start typing the name of the node and options will appear.
Click on the correct node and it will insert into your patch.

3. KEYBOARD SHORTCUT
Similar to double-clicking the patch. Click anywhere on the patch and press ‘i’ on your keyboard. This will bring up the
same search bar as above.

4. MENU BAR
This is a third way to bring up the search bar. Select ‘Edit > Insert Node...’ from the menu bar.

9 10

SET BOARD MODEL SET SERIAL PORT

11

WATCH YOUR LED!

Click upload and watch the LED on your board. It should
light up!

If not, don’t worry! Take a look at the Troubleshooting
box on the next page (p25).

Use the dropdown
menu to select the
option that ends in
‘(Silicon Labs)’.

Use the dropdown
menu to select
‘Arduino Uno’ or
‘Arduino/Genuino
Uno’.

Testing your board

SET PORT PIN

5 6 7

SET LUM PIN SET ACT PIN

ACT is a boolean pin
that can only be true or
false. Use the
dropdown to set this
to ‘True’. This makes
sure the LED responds.

LUM stands for
luminance, i.e. how
bright the LED is on a
scale of 0-1. Set this
to 1 (brightest level) by
typing ‘1’.

The LED on the board
is connected to port
D4, so click on the text
box next to PORT and
set this to D4 by
typing ‘D4’.

UPLOAD

8

Click on the small
lightening icon in the
bottom right, or select
‘Deploy > Upload to
Arduino...’ from the
menu bar.

22

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

23

ADD A BUTTON NODE

12

Now let’s add another
node. Using one of the
ways described on p21,
add a button node from
the xod/common-
hardware library.

13

SET BUTTON PINS:
UPD PIN

The UPD pin specifies how often the programme
updates. This can be set to ‘Never’, ‘On Boot (Boot)’, or
‘Continuously (Loop)’. Alternatively another node can be
connected to this pin and used to determine how often it
updates. Make sure this is set to ‘Continuously (Loop)’,
so that whenever we press the button it is read instantly.

SET BUTTON PINS:
PORT PIN

14

As with the LED node,
PORT specifies which
port the button is
connected to. Set this
to ‘D6’.

CONNECT THE NODES

15

We want the LED to turn on whenever we press the
button, so we need to connect the button output pin
PRS (press) to the led input pin LUM. Do this by clicking
on the PRS pin and then on the LUM pin. Now when you
click on the led node you will not be able to set the LUM
pin, because it’s value is determined by button node.

Testing your board

17

ADD A NOT NODE

To invert the signal from the button we can use a
different type of node that represent a logic function,
rather than a piece of hardware. Insert a not node from
the xod/core library.

20

EXPERIMENT!

Congrats! you've now made a simple programme that
uses an input (the button) and an output (the led) to
affect change. Why not try experimenting with this
patch? Play around with some pins. E.g. change the led
ACT pin, or link a clock node to the button UPD pin and
see what happens. See what you can achieve!

REWIRE THE PATCH

18

UPLOAD AND TEST

Now try uploading
your programme
again. This time it
should work as
planned.

Delete the link
between the button
and led. Connect PRS
to the not input pin,
and the not output pin
to LUM.

19

16

UPLOAD AND TEST

Upload the patch and see what happens. You will notice
that the programme is backwards. The LED is on and
turns off when you press it. This is because the board’s
buttons are set to be on by default, and turn off when
pressed. We can fix this programme with a logic node.

24

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

25

3

UPLOAD

Upload the empty
patch by clicking the
upload button as
before. This will turn
off the LED and clear
the board.

MAKE A NEW PATCH

1 2

NAME THE PATCH

Type a name for your
new patch, e.g. ‘clear’
and click confirm or
press the Enter key.

Add a new patch by
clicking the ‘Add patch’
button in the project
browser or selecting
‘File > New Patch...’
from the menu.

Troubleshooting
If your LED doesn’t light up straight away there a few quick things to check:

1. IS THE BOARD PLUGGED IN CORRECTLY?
If your board is plugged in correctly the power light on the right side of the Seeeduino module should light up. If not,
make sure that the USB cable is plugged in fully.

2. HAVE YOU SET YOUR NODE PARAMETERS CORRECTLY?
Setting the wrong parameters is a common mistake. In this case you should make sure the pins are set as follows:
PORT = D4 LUM = 1 ACT = True

3. HAVE YOU UPLOADED USING THE RIGHT BOARD MODEL AND SERIAL PORT?
After clicking the upload button you should make sure that you have the correct board model and serial port selected.
Use the dropdown menus to select ‘Arduino Uno’/’Arduino/Genuino Uno’ and ‘dev/tty.usbserial-0001 (Silicon Labs)’.

4. DO YOU NEED TO INSTALL A USB DRIVER?
If XOD is not recognising your board, you may need to install a CP210 USB driver (see page 15).

Still need help? XOD provides watch and tweak nodes which are useful for troubleshooting and debugging your programme.
Read more about them on page 27 of this guide, or take a look at XOD’s guide to debugging at www.xod.io/docs/guide/
debugging. For further help you can always contact the Biomaker team at coordinator@synbio.cam.ac.uk.

Clearing the Board
Once a programme is loaded onto your board it will remain there and restart whenever you turn
on the board. Each time you upload a new programme it will write over the previous
programme. You don't need to clear the board before you upload a new programme, but if you
wish to reset your board you can do this manually by uploading a blank patch in XOD.

Input and Output devices

MAKE A NEW PATCH

1 2

COPY YOUR PATCH FINDING A BUZZER NODE

There is no preinstalled node to represent the buzzer,
but several have been created by members of the XOD
community. We will use one from the library called
marcoaita/malibrary.

Drag a box around all
three nodes in the last
patch. Copy and paste
into your new patch.
This will save us some
work!

Follow the instructions
in ‘Clearing the Board’
to open and name a
new patch. (If you are
using the tutorial file,
move on to tuto201.)

Task 2: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (buzzer , button and rotary potentiometer modules)
• USB-A to micro USB cable

Great! You now understand the basic principles of using XOD,
and can programme your board to control one of the onboard
devices: the LED.

Like the button and the LED, most devices you will use can be
grouped into two general categories: inputs and outputs.

Understanding how to control different inputs and outputs,
and how to combine them together is key to making useful
devices.

In this task we will build on our knowledge to add two new
devices to our belt. The buzzer and the rotary potentiometer
(also known as a knob sensor).

3

26

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

27

6

ADD A BUZZER NODE

Now that the library is
installed you can
search for the
marcoaita/malibrary/
buzzer node and add it
as usual.

ADD A LIBRARY

4

Add this library by clicking on the ‘Add library’ button
(next to the ‘New patch’ button at the top of the Project
Browser) or by navigating to ‘File > Add Library...’. Type
the full name of the library, and when it appears, click on
it to install. If you get an error message asking to install
dependencies, accept this.

DELETE LED NODE

5

This time we want to
use the buzzer as an
output instead of the
LED. Click on the led
node and delete it.

7

SET BUZZER PINS:
PORT

The buzzer is
connected to port D5,
so make sure the
PORT pin is set to ‘D5’

SET BUZZER PINS:
FREQ

8

The FREQ pin sets the
frequency and pitch of
the buzzer. You can
leave this as 440, or
change it too see what
happens.

13

MAPPING VALUES: ADD AND CONNECT A MAP NODE

We could connect the pot output VAL (value) pin straight to the FREQ input pin. However,
this wouldn’t work well, as the VAL output ranges between 0 and 1, and frequencies
emitted by the buzzer are much higher. To get around this, we can add amap node. This
will ‘map’ your input range to a new output range, so we can change the 0-1 scale of the
potentiometer to a larger scale that the buzzer can use. Add a map node from xod/math.
Connect the pot VAL pin to themap X pin and themap output pin to the buzzer FREQ pin.

SET POT PINS

12

The potentiometer is
connected to port A0,
so set PORT to A0. Set
UPD to ‘Continuously’.

Input and Output devices

RECONNECT THE
NODES

9 11

ADD A POT NODE

Now let’s add a second input. We can use the inbuilt
rotary potentiometer (knob) to adjust the frequency of
the buzzer sound. To represent the potentiometer we
can use the pot node from the xod/common-hardware
library. Add a pot node to the patch.

Connect the not
output pin to the
buzzer EN (enabled)
pin. This will ‘enable’
the buzzer when the
button is pressed.

UPLOAD AND TEST

Now try uploading your
programme. It should
work similarly to the
LED patch, i.e. the
buzzer turns on when
you press the button.

10

28

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

29

UPLOAD AND TEST

Now try uploading
your programme. Use
the button to turn the
buzzer on and off, and
the potentiometer to
set the frequency.

15

Building Complex Devices
When building biological devices, you will need to combine a variety of inputs and outputs to create a functioning
programme and device. You will often receive inputs, e.g. from an on/off button or sensor, and then use these
inputs to create the desired output, e.g. displaying a reading, sending data to a computer or moving a motor.

The button, buzzer and potentiometer circuit used here is a very simple example, but the principle applies in more
complex systems too. Using XOD allows you to visualise this information flow from input to output, which can be
helpful and sometimes more intuitive than traditional text-based coding.

In the next lesson we’ll be getting a better understanding of what is possible in XOD by exploring a variety of
useful nodes and processes using a range of the board’s inbuilt devices.

When you are ready to explore beyond the starter kit’s capabilities, the Resources tab of the Biomaker website
explores a variety of common input and output devices which are useful for building biological devices.

SET MAP PINS

14

Smin and Smax set the source range, whilst Tmin and
Tmax set the target range. Set Smin to ‘0’ and Smax to
‘1’. Set Tmin to ‘200’ and Tmax to ‘1000’.

30

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

31

Lesson 3:
Explore XOD

Concat, Join and Format-Number nodes

Tweak and Watch nodes

Flip, Clock and Count nodes

Explore XOD

This chapter will explore some of the most useful nodes XOD has to offer.
These nodes are used very commonly when building simple instruments, and
will give you a good base to start from when exploring more complex devices.

The sections in this chapter are split into three tasks. First, following on from
Task 2 in the previous chapter, Task 3 explores ‘Tweak and Watch Nodes’,
which are useful for simulating and troubleshooting. Second, Task 4 examines
‘Flip, Clock and Count Nodes’ which are useful for ensuring correct timing of
programmes. Finally, Task 5 looks at ‘Concat, Join and Format-Number Nodes’
which are useful for using and formatting text in XOD.

This chapter also encourages you to experiment with your use of XOD. It
provides suggestions for how to expand the tasks, and encourages you to start
thinking about the different ways in which you can achieve a desired outcome
using no-code programming.

OBJECTIVES

By the end of this chapter you should be able to:

• Explain the functions of the following XOD nodes: tweak, watch, flip-n-
times, flip-flop, clock, count, concat, join, format-number.

• Apply your knowledge of these nodes to start building simple programmes.
• Use the XOD IDE to create and save a new project.
• Use the XOD IDE to ‘upload and debug’ programmes, allowing you to watch

and edit your programme live.
• Use two more of the inbuilt components on the Grove board: the

temperature and humidity sensor and the air pressure sensor.
• Build and compare different versions of a programme to achieve different

functions and outcomes.
• Experiment with the programmes you have built by changing parameters

and exploring new nodes
• Understand where to find more information about the basic nodes

available in XOD

Useful XOD nodes

32

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

33

Tweak and Watch nodes

The tweak nodes provided in XOD are a great way to edit your
programmes whilst they are running. They are used in conjunction with
the ‘Simulate’ and ‘Upload and Debug’ functions of XOD to edit
programmes in real time, meaning that you don’t have to reload the
programme each time you want to make a small change, like altering the
value of a pin.

There are multiple tweak nodes available depending on what type of pin
you would like to change, and you will need to use the matching tweak
node for the pin type, i.e. tweak-boolean, tweak-pulse, tweak-byte,
tweak-colour, and tweak-number. There are also several tweak-string
nodes depending on the size of string you want to input, e.g. tweak-
string-16 allows you you input a string of up to 16 characters, whilst
tweak-string-128 allows you to input up to 128 characters.

To use tweak nodes you will need to use the ‘Upload and Debug’ button
rather than the ‘Upload to Arduino’ button, as this opens XOD’s
‘Debugger’ function, which lets you live edit nodes. To edit a tweak node
in the Debugger, click on the node and you will now be able to make
changes in the Inspector whilst the programme is running.

TWEAK NODES

The watch node is the opposite of a tweak node. Instead of letting you
input data, it lets you view output data whilst the programme is running.
Connecting a watch node to any output pin lets you view the current
value of that pin. This is useful for being able to visualise what the
programme is doing, and where any problems are occurring.

A watch node can be connected to any output except a pulse output. To
visualise the output from a pulse pin, you can use a count node in
combination with a watch node. This is discussed further below.

Like tweak nodes, watch nodes need to be used in conjunction with the
Debugger function. When the Debugger opens, the watch node will turn
green and display the last value received from the connected pin.

WATCH NODE

Tweak and Watch nodes

MAKE A NEW PROJECT

1 2

ADD AND SET HYGROMETER NODE

The onboard temperature and humidity sensor is
technically known as a DHT11 hygrometer. There is a
preinstalled XOD node for this device called dht11-
hygrometer. Add this node to your patch from the xod-
dev/dht library. Set the port pin to ‘D3’

A new chapter deserves a clean slate, so let’s look at
how we start a new project. First, save your old project
(you can’t have two projects open at once). Then
navigate to ‘File > New Project...’ in the menu bar. Finally,
give your project a name, and you can get started. (If
you are using the XOD tutorial file, move on to tuto301).

Task 3: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (temperature and humidity sensor module)
• USB-A or USB-C to micro USB cable

In this task we’ll look at how we can use tweak and watch
nodes to take readings from another of the inbuilt devices:
the temperature and humidity sensor.

We’ll be using a tweak-pulse node to act as a button and take
a reading whenever we press (or ‘tweak’) it, and watch nodes
to display our readings on the computer screen.

We’ll also be using the ‘Simulate/Debug’ mode in XOD, which
lets us watch and make changes while the code is running.

This is a great example of how tweak and watch nodes can
be used to quickly and easily test a patch. They are very
useful for testing and debugging patches, so you should try
to get used to using them as you build.

34

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

35

5

UPLOAD AND DEBUG

Click the ‘Upload and
Debug’ button (beetle
icon) or use the
upload button and tick
the box labelled
‘Debug after upload’.

ADD TWEAK AND
WATCH NODES

3

CONNECT THE NODES

Connect the tweak-
pulse node to the UPD
pin and a watch node
to each of the pins Tc
(temperature ºC) and
RH (relative humidity).

Add a tweak-pulse
and two watch nodes
from the xod/debug
library.

4

8

WATCH AGAIN

Look at the watch
nodes again. This time
they should display
the current
temperature and
humidity.

‘TWEAK’ THE NODE

Whilst it is still running,
click on the tweak
node. In the Inspector
pane is a button next
to OUT that says
‘pulse’. Click it.

7

WATCH

6

Look at the watch
node. It won’t display
a reading yet because
we have set the UPD
pin to only update
when we tweak it.

Flip, Clock and Count nodes

Like the flip nodes, the clock node is also useful for
controlling the timing of your programmes. However,
instead of giving a boolean ‘True’/’False’ output, the
clock node sends pulses at a specific time interval. This
node creates a regular ‘ticking’ of pulses, which can be
used to control your programme.

The count node is complimentary to the flip and clock
nodes, and acts as a measure of how many times a
pulse or boolean ‘True’ signal has been sent. This is
useful for keeping track of your programme and it’s
progress. The clock node is also very useful, when used
in conjunction with a watch node, to visualise the output
from a pulse pin (see Task 4, Steps 15-16 for an
example of this use).

Flip nodes are boolean logic nodes that switch (or ‘flip’)
between two states: ‘True’ and ‘False’. There are two
useful flip nodes in XOD: flip-n-times and flip-flop.

The first node, flip-n-times, will switch between ‘True’
and ‘False’ a set number of times (N). You can
determine the time spent in each state using the Ton
and Toff pins, and the whole sequence will be initiated
by a pulse to the SET pin. This node is useful for
creating sequences and patterns.

The second node, flip-flop, will switch between ‘True’
and ‘False’ states each time the toggle (TGL) pin
receives a pulse. This is a particularly useful node
which can act as a toggle or switch in many situations.

FLIP NODES

CLOCK NODE

COUNT NODE

36

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

37

Task 4: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (LED module)
• USB-A to micro USB cable

In this task we’ll be experimenting with flip, clock and count nodes to control the behaviour of
the inbuilt LED, making it flash.

The flip and clock nodes can be useful for modifying and timing the behaviour of nodes, whilst
the count node can be useful for monitoring these behaviours. In the context of biological
devices, these nodes are very useful for fine-tuning devices and for building larger
programmes.

FLIP-N-TIMES NODE INPUTS

This node has 5 input pins: SET, RST (reset), N (number),
Ton (time on) and Toff (time off). This node defines a
sequence that will switch between true and false N
number of times. Ton and Toff define the duration of
each on and off state. A pulse to SET will start the
sequence, and a pulse to RST will reset the node.

2

NEW PATCH AND ADD
NODES

1

Open a patch (or go to
tuto401). Add these
nodes: tweak-pulse (xod/
debug), flip-n-times (xod/
core) and led (xod/
common-hardware).

FLIP-N-TIMES NODE OUTPUTS

3 4

CONNECT THE NODES

5

SET FLIP-N-TIMES
PINS

Set N to ‘5’, Ton and
Toff to ‘1’, and RST to
‘Never’. You can also
add a tweak-pulse
node to the RST pin to
test how it works.

Connect the tweak-
pulse node to the flip-
n-times SET pin, and
flip-n-times OUT pin
to the led LUM pin.

8

TWEAK AND WATCH

9

FLIP-FLOP NODE

Now lets try a different
flip node. Delete the
flip-n-times node and
add a flip-flop node
(xod/core).

Press the tweak-pulse
node and watch what
happens to the LED.
Each time you press,
the light should flash 5
times.

The flip-n-times node has three outputs. OUT reads the
current state of the node (true/false). Nc reads the
number of times cycled. ACT reads whether the
sequence is currently running or not. If you’d like to get
a better idea of how these outputs work, you can always
add watch nodes, to help see what’s going on.

SET LED PINS

6

As in Task 1 Steps 5-7
(p22), set the PORT
pin to ‘D4’ and the ACT
pin to ‘True’.

UPLOAD AND DEBUG

Upload and run the
programme in debug
mode using the button
with the beetle icon.

Flip, Clock and Count nodes

7

38

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

39

11

TEST THE PATCH

Upload the program
and pulse the tweak-
pulse node. The LED
should switch
between on and off
each time you press it.

The flip-flop node has 3 input pins: SET, RST and TGL
(toggle). TGL switches the node between true and false
each time it receives a pulse. Connect the tweak-pulse
node to TGL. Set SET to ‘On Boot’ and RST to ‘Never’.
The MEM (memory) output pin reads out the latest state
of the node. Connect this to the LUM pin of led.

CONNECT AND SET FLIP-FLOP PINS

10

14

RECONNECT

Delete the tweak-
pulse node and
connect the clock
node in its place by
linking the TICK pin to
the TGL pin.

SET CLOCK PINS

Set EN (enabled) to
‘True’ and RST to
‘Never’. IVAL
determines how often
the clock ticks (in
secs). Set this to ‘1’.

13

CLOCK NODE

12

The flip-flop node can
also flash the LED
when combined with a
clock node. Add a
clock node (xod/core)
to the patch.

17

SET COUNT PINS

Set RST to ‘Never’.
STEP determines how
much the count
increases by with each
pulse. Set this to ‘1’.

15

COUNT NODE

16

CONNECT COUNT NODE

Connect the led DONE pin to the count INC (increase)
pin. The DONE pin pulses each time the LED turns on or
off, and the INC pin increases the count each time it is
pulsed. Connect the count output pin to a watch node
so we can see the count. This will let us see on the
screen each time the LED pulses.

We’ll also add a count
node to this patch so
that we can monitor
the number of times
the LED flashes. Add a
count node (xod/core).

19

EXPERIMENT!

As with all programming, there is always more than one way to achieve a similar
outcome, and different methods may suit different applications. Here we have tested two
different ways of making the LED flash, but there are plenty of other ways you can
experiment with.
Why not try using a square-wave node to make the LED flash? See if you can work it out
using the help pane and XOD website. Or you can just try playing around with the nodes
you’ve already tried. Try experimenting with different timings and patterns of flashing.

18

TEST THE PATCH

Upload the program.
Watch the LED and
count. The LED should
flash and the count
will increase with each
flash.

Flip, Clock and Count nodes

40

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

41

Watching Pulse Pins:
Combining Count and Watch Nodes
Combining count and watch nodes is a really useful way to visualise the output of a pulse pin.
Unfortunately, a pulse output can not be directly connected to a watch node in XOD, as the
data types (pulse and string) clash.

We can get around this by connecting a pulse output to the INC pin of a count node, and then
connecting a watch node to the count output pin (as we did in Steps 15-16 of this Task). In
this setup, the count node increases with each pulse sent, and we can visualise this in the
debugger with the watch node.

Discovering New Nodes
The last step of this task encourages you to try out a new node: the square-wave node. We have not provided
specific information about this node here, but it is useful to practice discovering new nodes for yourself.

To work out how a new node works, it is best to start with understanding what its pins do. In most cases, the
Quick Help pane will give a brief explanation of the node and what each of its pins does. This is often enough
information to work out the node’s function and how to use it.

You can also find additional documentation about each node on the XOD website. You can access this by
clicking on the document button next to the node name in the Inspector pane. Or by visiting www.xod.io/libs
and using the search function.

When the documentation for a node is not sufficient, you can usually still work out its function by adding
tweak nodes to its inputs and watch nodes to it’s outputs. Then simulate or ‘Upload and Debug’ your patch.
Try editing each of the inputs in turn and watch how this affects the outputs. In this way you can often
determine a node’s function experimentally.

If you are still having trouble, you can always find help on the XOD forum at www.forum.xod.io.

Concat, Join and
Format-Number nodes

As the name suggests, the format-number node allows
you to format number outputs. With this node, you can
determine the amount of decimal places displayed,
which can be very useful if you would like to display a
sensor reading, for example. This node also converts
the format of the input from a number to a string.

Other nodes useful for formatting numbers include
number-split-to-digit, from the library gst/number-split-
to-digit), dec-to-2digits and dec-to-4digits, both from
the library cesars/utils.

FORMAT-
NUMBERNODE

The join node is similar to the concat node, but has the
additional feature of allowing you to chose how the
different string inputs are joined together. The delimiter
(D) pin determines what character is used to separate
inputs, e.g. a space, comma or colon etc. This is
particularly useful for storing data readings, as you can
separate values with a comma or tab to create comma-
separated (.csv) or tab-separated (.tsv) files. Like
concat, the join node is variadic, and can take as many
inputs as necessary.

JOINNODE

The concat node allows you to join two or more sets of
strings together. This is useful for combining different
inputs for display or storage. E.g. combining a number
readings from a sensor with the symbol for it’s units.
Concat will join the inputs directly, so if you require a
space between them you will need to input this in your
string.

Concat is a variadic node. Meaning you can change the
number of inputs. You can do this by dragging out the
white tab on the right side of the node.

CONCAT NODE

42

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

43

Task 5: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (air pressure sensor module)
• USB-A to micro USB cable

NEW PATCH AND ADD LIBRARY

1

Open a new patch (or move on to tuto501). To work with
the air pressure sensor (also known as a barometer) you
will need to install the library wayland/bmp280-
barometer.

In this task we’ll look at using concat, join and format-number nodes. These nodes are
especially useful when working with data and displays.

The concat and join nodes are both used to combine information in the form of strings (text).
The format-number node is used to set the number of decimal points displayed in a number. In
combination, these nodes are useful for formatting the outputs of sensor modules, both for
data storage, and for display on a screen.

2

ADD BAROMETER-
THERMOMETER NODE

Add a barometer-
thermometer node
(wayland/bmp280-
barometer) to the
patch.

8

ADD WATCH NODES

Add two watch nodes
(xod/debug). Link one
to the output of the
concat node, and one
to the output of the
join node.

SET FORMAT-
NUMBER NODE

Link the barometer-
thermometer PRESS
pin to the format-
number NUM (number)
pin. Set DIG (digits) to
‘0’ decimal places.

6

ADD AND SET JOIN NODE

7

Add a join node (xod/core). This is similar to concat, but
has a D (delimiter) pin. D determines how inputs are
joined (e.g. via a space or colon). It’s automatically set
to be a space. Leave it as this. Connect the first input
(S1) to the format-number STR (string) pin. Set the
second input to ‘Pa’ (pascals, the unit of air pressure).

Add a concat node (xod/core). This node combines
multiple strings from the input pins into a single output.
This node is ‘variadic’ meaning you can expand the node
by pulling on the tab on the right, letting you increase the
number of inputs. Connect the first input to the TEMP
pin. Set the second input to ‘oC’ (degrees centigrade).

ADD AND SET CONCAT NODE

4

ADD FORMAT-
NUMBER NODE

Add a format-number
node (xod/core). This
node lets you format
the number of decimal
places in a number.

5

SET BAROMETER-
THERMOMETER NODE

Set UPD to
‘Continuously’. Leave
other inputs as they
are. Outputs are
temperature (TEMP)
and pressure (PRESS).

3

Concat, Join and
Format-Number nodes

44

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

45

9

TEST THE PATCH

Upload and debug.
Look at the watch
nodes. You may need
to expand the watch
nodes by pulling on the
bottom right corner.

10

EXPERIMENT!

Play around with the nodes in your patch to see how
you can format the sensor output in different ways. Try
exploring other nodes available for formatting numbers
in XOD. For example, number-split-to-digit (from gst/
number-split-to-digit), dec-to-2digits or dec-to-4digits
(both from cesars/utils).

More Information on Basic Nodes
This section has covered a number of basic nodes that we have found useful in building simple
biological devices. However, there are plenty of other useful nodes out there, both pre-installed in
XOD, and created by XOD users such as yourself.

In the rest of this guide we will continue to explore useful nodes and techniques in XOD, but if
you’d like to explore for yourself, here are a few useful resources for getting to grips with XOD:

XOD TUTORIAL
Each time you open XOD it will offer you the option of following its inbuilt tutorial. Working through
this is a great way to learn more about what XOD can do.
It is also available online at www.xod.io/docs/tutorial.

XOD GUIDE
The XOD user guide provides advice on some more complex concepts, as well as some case
studies to work through. It is available online at www.xod.io/docs/guide.

XOD CORE LIBRARY
Taking a look through the nodes in the XOD core library will help you understand the most basic
nodes available and what they do. Find xod/core in the Project Browser.

46

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

47

Lesson 4:
Building
Devices

Sequences and Loops

Creating new nodes

Program logic

Using Buses

Building devices
So far in this guide we have explored how to use a few useful nodes to perform
some simple tasks, like watching the readings from a sensor, or flashing an
LED. However, we often want to perform more complex tasks, like reading and
storing data, displaying information on a screen, or creating complex logical
programmes.

This lesson will build on what we have learned already, and explore some more
complex concepts in XOD. This will help you to build larger, more complex
programmes and devices in a neat and efficient way.

The first two tasks in this lesson, Task 6 and Task 7 will cover how to make
new nodes and how to use buses respectively. These skills are useful for
creating tidy, and compartmentalised programmes. Task 8 and Task 9 will
then explore how we can use these skills to build logic-based programmes,
and how we can introduce sequences and loops, which are useful for
biological devices.

OBJECTIVES

By the end of this chapter you should be able to:

• Describe the function of XOD terminal nodes and how they are used.
• Create new nodes in XOD by combining existing and terminal nodes.
• Test and use the new nodes you have created in programmes.
• Describe the function of buses, their advantages, and how to use them.
• Use maths and logic nodes to create logic programmes in XOD.
• Recall at least two different methods for creating sequences in XOD.
• Implement programming loops in XOD using the defer node.
• Use the remaining components on the Grove board: the sound sensor,

light sensor, 3-axis acceleration sensor and the OLED screen.
• Programme the OLED screen to display graphics such as text and

shapes.
• Recall how to document your nodes correctly, including describing the

node and it’s pins and adding comment boxes.
• Recall how to publish nodes, or collections of patches a library.

XOD patch from Task 9: Sequences and Loops

48

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

49

XOD terminal nodes

If we want to build programmes capable of more complex functions than producing a simple
input and output, we will need to add a few more skills to our repertoire. More complex
programmes often require more nodes, and the multitude of nodes and links can quickly
become confusing. The good news is that XOD provides several ways of reducing the
complexity of your patches and keeping your programmes neat and tidy. This is good practice
so that you can keep track of what you’re doing, and also for others who may need to
understand your programme.

One way simplify a complex programme is to make your own nodes. This means that you can
encapsulate specific functions within your programme into neat little packages that can be
easily connected to each other. It also has the advantage that they can easily be shared with
the wider XOD community, making useful new nodes available to everyone.

Creating your own nodes is much easier than it sounds. It is essentially the same as creating
any other patch, but we need to add special nodes called ‘terminals’ to allow our new node to
communicate with other nodes.

There are two types of terminals: inputs and outputs. Like tweak nodes, they come in different
types based on their data type. The nodes above from left-to-right, top-to-bottom are: input-
boolean, input-byte, input-number, input-port, input-pulse, input-string, input-t1 (custom input
type), output-boolean, output-byte, output-number, output-port, output-pulse, output-string,
output-t1 (custom input type).

In the next task we’ll explore in more detail how to use these terminals to create your own
nodes, using the inbuilt OLED screen on your board as an example.

The XOD website also provides some excellent information about how to make your own
nodes at www.xod.io/docs/guide/nodes-for-xod-in-xod.

Creating new nodes
Why Create New Nodes?

Creating new nodes

3

ADD NODES

From the wayland/ssd1306-oled-i2c library, add the
following nodes to your patch: ssd1306-oled-i2c-
device, rotate-display, clear-display, draw-text, send-
buffer-to-display.

Task 6: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (sound sensor and OLED screen modules)
• USB-A to micro USB cable

In this task we’ll learn how to make a new node that will allow
us to write text on our OLED screen.

Instructing the OLED screen to display text is a slightly more
complex task than we have done so far, and involves several
nodes to represent the screen rather than one.

In this task we’ll be combining these multiple nodes into one,
which we will then use to display the readings from our
onboard sound sensor.

Creating nodes like this is useful as it helps to simplify the
patch, and we can also save new nodes for later use in
different programmes.

NEW PROJECT AND
NEW PATCH

Save your project and
create a new one (or
move on to tuto601).
Add a new patch to
the project, and name
it ‘write-text-to-oled’.

1

ADD LIBRARY

2

To work with the OLED
screen you will need to
install the library
wayland/ssd1306-
oled-i2c.

50

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

51

D

E

A

B

C

D

E

SSD1306-OLED-I2C-DEVICE
This node represents the OLED device.
WIDTH and HEIGHT set the dimensions of the
screen in pixels. Leave these as ‘128’ and
‘64’. ADDRESS identifies the port, leave this
as ‘3Ch’. RESET represents the screen’s reset
pin. Leave this as ‘-1’ as our board does not
have a dedicated screen reset pin. The output
of this node, DEV (device) needs to be
connected to each of the other nodes’ DEV
input pins.

ROTATE-DISPLAY
You can change the screen orientation using
this node. Set ROT to ‘02h’, which is correct
for our screen. Set UPD to ‘On Boot’ so that
the screen updates when the programme
starts. This node starts a sequence that
allows us to display items on the screen. In
this sequence, each DONE pin connects to
the next UPD pin. Connect the rotate-screen
DONE pin to the clear-display UPD pin.

CLEAR-DISPLAY
This node should be used before displaying
anything on the screen. Connect the DONE
pin to the draw-text UPD pin.

DRAW-TEXT
This node inputs the text we want displayed.
X and Y determine the position of the text by
coordinates. Leave these as ‘0’, ‘0’. TEXT is
where you enter your text. Use ‘Hello!’ as a
test. SIZE determines the size of the text.
Leave this as ‘02h’. COLOUR determines the
colour of the text (black or white). Set this to
‘1’. WRAP determines whether the text is
wrapped within the boundaries of the screen.
Leave this as ‘True”. Connect the DONE pin to
the send-buffer-to-display UPD pin.

SEND-BUFFER-TO-DISPLAY
So far we have written information to the
microcontroller’s memory, but we haven’t
actually sent it to the screen. This node is the
final step that sends this data. It needs to be
used whenever you want to display
something on the screen.

4

Setting up the OLED screen requires several connections
between these nodes, so let’s take it step by step.

SETTING UP THE OLED SCREEN

AB

C

7

11

TEST THE PATCH

Upload the patch, and
you should see the
readings from the
sound sensor
displayed on your
screen.

ADD AN INPUT-
STRING NODE

8

MAKE A NEW PATCH

Now we’ve made our
new node, let’s try
adding it to another
patch. Add a new
patch and name it
‘sound-sensor’.

Add an input-string
node (xod/patch-
nodes) and connect it
to draw-text TEXT.

5

TEST THE PATCH

6

ADD A CLOCK NODE

Add a clock node
(xod/core) and link the
TICK pin to rotate-
display UPD. This will
make your screen
update once a second.

Upload the patch and
watch your OLED
screen. White text
should appear in the
top left-hand corner of
the screen.

ADD WRITE-TEXT-TO-
OLED NODE

9

To add your new node
to a patch, simply
search for it as usual,
or drag the patch from
the Project Browser
into the patch.

ADD AND SET ANALOG-SENSOR NODE

10

Now that we have a node that will write text to the
screen, let’s use it to display a sensor reading. For many
common analog sensors (including the inbuilt sound
sensor) you can use the simple XOD analog-sensor
node (xod/common-hardware). Add this node, set PORT
to ‘A2’, and connect VAL to the write-text-to-oled node.

Creating new nodes

52

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

53

B

A

B

C

D

SECOND DRAW-TEXT NODE
Add a second draw-text node below the
first. We will use this to draw a second line
of text. Set the Y pin of this node to 20. This
will move the text down by 20 pixels,
creating a new line.

RECONNECT
Delete the link between the first draw-text
node and send-buffer-to-display. Link the
first draw-text DONE pin to the second
draw-text UPD pin. Link the second draw-
text DONE pin to the send-buffer-to-display
UPD pin. Connect ssd1306-oled-i2c-device
DEV to the second draw-text DEV pin.

LABEL INPUT-STRING NODES
Add a second input-string node and
connect it to the TEXT pin of the second
draw-text node. We will now have more
than one input into our node, so we need
give them labels, to avoid confusion. Click
on each input-string node in turn. Use the
Inspector pane to name your nodes by
typing in the ‘Label’ text box. Name your
nodes ‘LINE 1’ and ‘LINE 2’ respectively.

ADD OUTPUT-PULSE NODE
Add an output-pulse node to the patch, and
connect it to the send-buffer-to-display
DONE pin. Use the Inspector to label this
node ‘DONE’.

12

Writing a line of text directly to the OLED screen is great,
but what if we need a more complicated node? For
example, one that takes multiple lines of text, or one that
sends a signal once the text has been uploaded?

Lets go back to our write-text-to-display node. You can
do this by opening the patch in the Project Browser, or by
double clicking on the node in your patch.

Make the changes listed below to expand the capabilities
of your node.

A

B

B

C

D

C

MODIFY YOUR NODE

15

TEST THE PATCH

Upload and debug.
You should see two
lines of text on your
screen, and the watch
node will count when
the screen updates.

MODIFYING YOUR PATCH

13 14

ADD COUNT AND WATCH NODES

Add a count node (xod/core) and watch node (xod/
debug). Link the write-text-to-oled DONE pin to the
count INC pin, and the watch node to the count output
pin. A watch node cannot be directly linked to a pulse
pin, so this is a useful trick if you want the watch the
output from a pulse pin.

Return to your ‘sound-sensor’ patch using the tab at the
top, or the Project Browser. You will notice that the
write-text-to-oled node has changed. It now has two
inputs and an output. Delete the link between VAL and
LINE 1 and link VAL to LINE 2 instead. Use the Inspector
to set LINE 1 to ‘Volume:’.

16

EXPERIMENT!

The OLED screen is a really useful device, and can be used in a multitude of different
ways. Try playing around with your new node by adding another line, or changing the
position and size of the text. Or you can try using the OLED to display data from a
different sensor. You can also experiment with some of the other nodes in the wayland/
ssd1306-oled-i2c library. This library contains lots of useful nodes for drawing different
objects on the screen, as well as several example patches to show you how they work.

Creating new nodes

54

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

55

Documenting Nodes
When publishing your work it is good practice to make sure that your nodes are well documented. This
helps to remind yourself what you’ve done, and allows others to get an idea of how the node can be
used.

Before you publish you library, make sure that you have described the node and each of it’s pins. To
write a description of the node, click a blank space on the patch and a ‘Description’ box will appear in the
Inspector pane. Write a brief description about what the node does and what its used for, e.g. “This node
writes two lines of text to the ssd1306 OLED screen”.

To write a description of the pins, click on an input or output node and you will see the ‘Description’ box
at the bottom of the Inspector pane. Write a brief description of the pin, e.g. “String to display on the first
line of text. Text will appear at coordinates 0:0”.

You can also provide more information about how your node works by adding comments to the patch.
To do this, navigate to ‘Edit > Insert Comment’ in the menu bar. You can find out more about
documenting nodes at www.xod/docs/guide/documenting-nodes.

Sharing Nodes and Publishing Libraries
One of the great advantages of XOD is the growing community of contributors, who are generating an
ever-expanding range of nodes and libraries for other to use. When you create new nodes that you think
might be useful for others, you can easily share these with the XOD community by publishing them as a
library.

There are no strict rules about what constitutes a library, so even if you only create one node, this can
still be a library. Publishing allows others to use your nodes, but is also useful for reusing your own work,
as you can download your own libraries for use in all of your projects.

Creating a library is essentially just making a project with a patch for each node. You can also include
patches with example of how to use the nodes, as there are in the wayland-ssd1306-oled-i2c library.
Once you’ve created your project, you need to set the metadata. Do this by navigating to ‘Edit > Project
Preferences’ in the menu bar. Here you should enter a name a description for you library, as well as a
licence type (e.g. GNU, CC-BY etc. more info. at www.opensource.org/licenses).

To publish your library, go to ‘File > Publish Library’ in the menu, click ‘Publish’, and you’re done! You can
find out more about publishing libraries at www.xod.io/docs/guide/creating-libraries.

Using Buses

3

CLONE WRITE-TEXT-TO-OLED PATCH

For this task we’ll be using the OLED display again, but
in a slightly different way. So that we don’t have to start
again, we can clone the write-text-to-oled patch by
right clicking on the patch in the Project Browser and
selecting ‘Clone’. Rename the new patch from ‘write-
text-to-oled-copy’ to ‘write-dot-to-oled’.

Task 7: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (3-axis acceleration and OLED screen modules)
• USB-A to micro USB cable

In this task we’ll look at another way to simplify our patches:
using buses. Buses are a way to link pins ‘invisibly’ so that
you don’t have too many link intersections that make the
data flow confusing.

Buses are a little like input and output nodes. They come in
two types, to-bus and from-bus, and they automatically take
the data type of the pin they’re connected to.

The to-bus node is used like an output node and sends
information from an output to a bus. The from-bus node acts
like an input node and retrieves information from the bus of
the same name.

We’ll practice using buses by displaying the output of our 3-
axis acceleration sensor (also known as an accelerometer or
tilt sensor) on our OLED screen.

MAKE A NEW PATCH

Add a new patch to
the project, and name
it ‘tilt-sensor’ (or move
on to tuto701).

1

ADD LIBRARY

2

To work with the
accelerometer you will
need to install the
library wayland/
lis3dh-accelerometer.

56

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

57

D

E

A

B

C

D

E

ADD AND SET DRAW-CIRCLE NODE
Delete both draw-text nodes along with their
associated input nodes. Add a draw-circle
node. Set R (radius) to ‘3’ to make a circle 3
pixels wide. Leave colour as ‘1’. Set FILL to
‘True’ so that we get a solid circle rather than
an outline.

RECONNECT
Link the clear-display DONE pin to the draw-
circle UPD pin. Link the draw-circle DONE pin
to the send-buffer-to-display UPD pin.

ADD INPUT-NUMBER NODES
Add two input-number nodes and connect
them to the X and Y pins. Use the inspector to
label these ‘X’ and ‘Y’.

REPLACE LINKS WITH BUSES
Although the OLED patch worked, it was very
messy, with links criss-crossing, and it would
be easy to miss a connection. Let’s improve
this by replacing these links with a bus. First,
delete all of the orange links between the
ssd1306-oled-i2c-device and the other
nodes. Add a to-bus node (xod/patch-nodes)
and link it to the output of ssd1306-oled-i2c-
device. Use the inspector to label this node
‘DEV’. Add a from-bus node (xod/patch-
nodes). Make sure this from-bus node is also
labelled ‘DEV’ as buses can only
communicate if they have the same name.
Repeat this process, or copy and paste the
DEV from-bus node until you have four in
total. Connect these to each of the DEV input
pins on the nodes rotate-display, clear-
display, draw-circle and send-buffer-to-
display.

CHANGE CLOCK TIMING
Set the clock IVAL pin to 0.1, so that it
updates more frequently.

4

This time we would like to draw a small circle on the
screen instead of text. The circle will move around the
screen as you tilt the board.

Follow the instructions below to modify the write-dot-to-
oled patch for this new purpose.

A

B

B

C

MODIFY YOUR NODE

TEST THE NODE

5 6

ADD AN ACCELEROMETER NODE

Add an accelerometer node (wayland/lis3dh-
accelerometer). We want to use the output from the
accelerometer to set the location of the dot on the
screen. You could connect the accelerometer X and Y
pins directly to the write-dot-to-oled X and Y pins, but it
wouldn’t work as the nodes’ ranges don’t match up.

9

CONNECT MAP NODE

10

REPEAT MAP NODE

Add a secondmap
node add link it to the
Y output. Set Smin to ‘-
10’, Smax to ‘10’, Tmin
to ‘128’ (the screen
width) and Tmax to ‘0’.

Link the accelerometer
X and map X pins. The
node now converts the
accelerometer X range
to values within the
height of the screen.

Test the node by returning to your tilt-sensor patch,
adding a ‘write-dot-to-oled’ node, and connecting two
tweak-number nodes to the X and Y inputs. Upload and
debug. Click on the tweak-number nodes and use the
Inspector to change their values. Watch how this shifts
the dot around the screen.

ADD A MAP NODE

7

To fix this, add amap
node (xod/math). This
node lets us map the
accelerometer output
range to the write-dot-
to-oled input range.

SET MAP NODE

8

Set Smin to ‘-10’ and
Smax to ‘10’ (the range
of the accelerometer).
Set Tmin to ‘64’ (the
screen height) and
Tmax to ‘0’.

Using Buses

58

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

59

11

ADD ROUND NODES

Add two round nodes
(xod/math). Connect
them to the outputs of
themap nodes. This
will round the outputs
to whole numbers.

EXPERIMENT!

Experiment with the nodes in this patch. Can you get
some text to appear when the dot lands in the middle? It
is also worth exploring the wayland/lis3dh-
accelerometer library, as it has useful nodes and plenty
of demonstrations. For example, the click-detector
node above, which detects taps of the sensor.

14

CONNECT ACCELEROMETER TO OLED

Delete the tweak nodes from the write-dot-to-oled
node. Connect the round output linked to the
accelerometer X output to the Y input pin, and the round
output linked to the accelerometer Y output to the X pin.
This seems counter-intuitive, but is due to the settings
of the different nodes.

12

TEST THE PATCH

13

Upload the patch. Tilt
your board left and
right, backwards and
forwards, and watch
the little dot on the
screen move!

Program logic

Task 8: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (light sensor and OLED screen modules)
• USB-A to micro USB cable

In this task we’ll take some of the skills we’ve learned so far
in this lesson and use them to create a more complex
programme that uses logic to instruct the board what to do.

We’ll be using the light sensor and OLED screen modules of
the board to create a simple light sensing device.

Whilst this is still a fairly simple device, it contains a lot of the
basic functions that you can use for your own instruments:
an input in the form of a sensor; a logic programme that
instructs the board what to do based on the value of this
input; and an output that changes something, in this case the
text displayed on a screen.

MAKE A NEW PATCH

Add a new patch to
the project, and name
it ‘light-sensor’ (or
move on to tuto801).

1 3

ADD NODES

Add the following nodes to the light-sensor patch:
analog-read-no-port-check (wayland/analog-read-no-
port-check), watch x2, tweak-number x2 (xod/debug),
multiply, less, greater, nor, if-else x3, concat (xod/core),
input-port, input-pulse, output-string, to-bus x2, from-
bus x5 (xod/patch-nodes).

ADD LIBRARY

2

To work with the light
sensor you will need
to install the library
wayland/analog-read-
no-port-check.

60

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

61

D

E

4

A

B

C

A

B

C

D

E

ANALOG-READ-NO-PORT-CHECK
This node represents the light sensor.
Connect the VAL output to the first input of
themultiply node.

MULTIPLY
We will use themultiply node to scale up the
output of the sensor node. The node will
multiply the input values, so let’s set the
second input ‘100’. Connect one of the to-bus
nodes to themultiply output and label it
‘VAL’.

LESS
This node takes the first input value and
compares it to the second input value. It will
return ‘True’ if the first value is less than the
second, and ‘False’ if not. Connect one of the
from-bus nodes to the first input and label it
‘VAL’ so it receives the value output by the
multiply node. Connect one of the tweak-
number nodes to the second input so you can
tweak the lower limit later.

GREATER
The greater node is very similar to the less
node, but it will return ‘True’ only when the
first input is greater than the second input.
Repeat the same connections for the greater
node. Connect a from-bus node to the first
input and label it ‘VAL’. Then connect a
tweak-number node to the second input to let
you tweak the upper limit.

NOR
The nor node will only return ‘True’ if both
inputs read ‘False’. We want a third state that
triggers if the light intensity is neither less
than the lower limit, nor greater than the
upper limit, and we will use the nor node to
achieve this. Connect the output of less node
to the first nor input, and the output of the
greater node to the second nor input.

We want our node to return one of three readings
depending on the light intensity: ‘too dim’, ‘all ok’ or ‘too
bright’. We’ll use a combination of simple logic functions
to programme this capability.

Follow the instructions below to set up your patch.

SET UP YOUR LIGHT-SENSOR NODE (PART 1)

Program logic

D

E

5

A

B

C

A

B

C

D

E

IF-ELSE
The if-else node will output one value (T) if the condition
(COND) it receives is true, and another (F) if it is False. We
want to set up the three if-else nodes so that each of the
above conditions (less than the lower limit, greater than
the upper limit, or neither) returns as different line of text.

Set the T pin of the first if-else node to ‘too dim’ and
connect the COND pin to the less output. Set the T pin of
the second if-else node to ‘all ok’ and connect the COND
pin to the nor output. Set the T pin of the third if-else node
to ‘too bright’ and connect the COND pin to the greater
output. We will leave the F pins blank, so that nothing is
returned when the conditions are false.

CONCAT
Use the tab on the variadic concat node to expand it to
three inputs. Connect all three of the if-else outputs to the
concat inputs. This will combine all three responses into
one string. Due to the logic conditions, only one string will
returned at a time and each of the other two nodes will
return a blank value. Connect the second to-bus node to
the concat output and label it ‘STATE’.

INPUT NODES
Connect the input-port node to the PORT pin of the
analog-read-no-port-check node and label it ‘PORT’.
Connect the input-pulse pin to the UPD pin of the analog-
read-no-port-check node and label it ‘UPD’.

OUTPUT NODE
Connect a from-bus node to the output-string node and
label both nodes ‘STATE’. This may seem redundant, but
will help us with our next step.

WATCH NODES
Connect a from-bus node to each watch node. Label one
‘VAL’ and one ‘STATE’. This will link one to the 100x
multiplied output of the sensor node so that you can see
the sensor reading, and one to the final output of the
concat node so that you can see the current state. By
adding buses here we can put the two watch nodes
together and easily view the outputs side by side, rather
than having to move around the screen.

You should now have completed the first half of the patch.
Continue setting up the second half by following the instructions below.

SET UP YOUR LIGHT-SENSOR NODE (PART 2)

62

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

63

ADD AND CONNECT
NODES

9

Add your light-sensor
node and a write-text-
to-oled node to the
patch. Set LINE1 to
‘Light:’ and connect
STATE to LINE2.

EXPERIMENT!

11

Explore some of the
other logic nodes from
the xod/core library. Or
try using pulse-on-true
with if-else to control a
programme’s timing.

UPLOAD AND DEBUG

Upload and debug the
light-sensor patch
using the button with
the beetle icon.

SET RANGE

7

Use the tweak-number
nodes to find a range
that works. We have
used 10-60 but this
may need adjusting to
your environment.

MAKE A NEW PATCH

Add a new patch to
the project, and name
it ‘light-sensor-
display’ (or move on to
tuto810).

8

TEST THE PATCH

10

Upload the patch.
Change the light
intensity by moving or
covering the board.
Watch how this affects
the screen output.

6

Sequences and Loops

Task 9: Requirements
• Computer running MacOS, Windows or Linux (XOD software and USB driver installed)
• Grove Beginner Kit for Arduino (buzzer module)
• USB to micro USB cable

In this final task we’ll explore one of the most useful skills for
building biological devices: creating sequences and loops.

By programming a sequence of events, using logic and
introducing loops we can make devices that are useful for
tasks such as automation, monitoring and response to
environmental conditions.

This task will introduce these skills by using the buzzer to
play a simple tune ‘hot cross buns’ (an English nursery
rhyme).

This will involve creating two separate sequences and using
logic nodes to instruct the programme when to play them.
We will use two different methods to make the sequences,
and will create a separate node for each one.

MAKE THREE NEW
PATCHES

Add three new
patches to the project,
and name them
‘bar124’, ‘bar3’ and
‘play-tune’ (or move
on to tuto901).

1 3

ADD NODES TO BAR3

Add the following nodes to the bar3 patch: buzzer-
timed (marcoaita/malibrary), clock, count x2, or, defer,
if-else, equal, pulse-on-true (xod/core), between x2 (e/
comparison - you will need to install this library) input-
pulse x2, input-boolean, output-pulse, output-number,
to-bus x3, from-bus x5 (xod/patch-nodes).

ADD NODES TO
BAR124

2

Add: buzzer-timed x3
(marcoaita/malibrary),
delay, count (xod/core),
input-pulse x2, output-
pulse, output-number
(xod/patch-nodes).

64

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

65

4

A

A

A

B

C
A

B

C

BUZZER-TIMED NODES
Set each of the buzzer-timed nodes to play
a different note by changing their frequency
pins. Set one to ‘246.94’ Hz and change its
name to ‘B’ using the label field in the
Inspector. Set one to ‘220’ Hz and name it
‘A’. Set one to ‘196’ Hz and name it ‘G’. Set
PORT to ‘D5’ and EN to ‘False’ on all three.
Set T (time) to ‘1’ on B and A and to ‘2’ on G.
This will produce a longer final note.
Connect the DONE pin of B to the SET pin of
A and the DONE pin of A to the SET pin of G.
Add the output-pulse node to the DONE pin
of G and name it ‘DONE’, so that we can see
when the sequence is complete.

COUNT
Connect the DONE pin of G to the INC pin of
count so that the count increases each time
the sequence is complete. Add the output-
number node to the output pin and name it
‘RND’ (round), so that we can see the
number of times the sequence has played.
Add an input-pulse node to the RST (reset)
pin and name it ‘RST’. We will use this to
reset the count when the tune finishes.

DELAY
We will use the delay node to introduce a
half second gap between each bar. Set T
(time) to 0.5, and connect the DONE pin of
delay to the SET pin of B. Add an input-
pulse node to the SET pin of delay and
name it ‘SET’. We will use this input to
initiate the sequence.

In this patch we will create the sequence of notes (B, A,
G) that make up bars 1, 2 and 4 of the tune.

To test this node, you can add a tweak-pulse node to the
SET pin of delay. Upload and debug, then use the tweak-
pulse node to initiate the sequence.

This patch uses a series of nodes with connected SET
and DONE pins to create a sequence, similar to how we
created our write-text-to-oled node in Task 6. The patch
for bar 3 will create a sequence in a slightly different way.

SET UP YOUR BAR124 NODE

Sequences and Loops

D

E

5

A

B

C

A

B

C

D

E

BUZZER-TIMED
Set the port to ‘D5’ and EN to ‘False’. Set T (time) to 0.5. Add
a from-bus node to the FREQ pin and name it ‘FREQ’. This
will allow our logic nodes to set the frequency of the note
depending on the beat number.

COUNT
Connect the buzzer-timed DONE pin to the count INC pin, so
the the count increases each time the buzzer sounds. Add
an input-pulse node to the RST pin and name it ‘RST-BEAT’.
We will use this to reset the count at the end.

DEFER
The defer node is the key to creating loops in XOD. In this
case, we are creating a loop that reads out the beat number,
and changes the frequency of the note and decides whether
to repeat based on this. Connect the count output pin to the
defer input pin to inform XOD of this loop. Add a to-bus
node to the output pin and name it ‘COUNT’. This will feed
into our logic nodes.

CLOCK
We want the buzzer to sound a short note repeatedly. To do
this, connect the clock node to the buzzer-timed SET pin.
Set RST to ‘On Boot’ and set the IVAL (interval) pin to 0.51,
which is slightly longer than the buzzer sounding time.

OR
Using the clock node we’e made the buzzer sound regularly,
but we don’t want it to sound all the time. We need to add
conditions specifying when the clock is enabled. The buzzer
should sound EITHER at the start of the third bar, OR when
the sequence has started but not yet finished, i.e. after beats
1-7, but not after beat 8. Connect the or node to the EN pin
of the clock node. Add an input-boolean node to one of the
input pins and name it ‘SET’. We will use this to initiate the
sequence at the start of bar 3. Add a from-bus node to the
other input pin and name it ‘BEAT’. This will continue the
sequence after beats 1-7.

In this patch we will create the sequence of notes (G x 4, A x 4) that
makes up bar 3 of the tune.

We will do this in a slightly different way to the bar134 node. First we will
set up a sequence to time the notes, then we will use logic nodes to
control the frequency and number of the notes. This will create a loop
that feeds information coming out of the programme back into the
sequence. We will use buses to connect the two halves of this node.

SET UP YOUR BAR3 NODE (PART 1)

66

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

67

6

A

B

C

SET UP YOUR BAR3 NODE (PART 2)

Follow the instructions below to complete the second half of the loop.

Your bar3 node is now complete. To test this node you can add a flip-flop and tweak-pulse
node to one of the or inputs. Pulse this twice to start and stop the sequence.

A

B

C

FREQUENCY
This part switches the note between G and A depending on the count number.
Use one of the between nodes. Add a from-bus node to the X pin and name it
‘COUNT’ so that it receives the count number from the end of our sequence.
Set MIN to ‘0’ and MAX to ‘3’. Connect the output to the COND pin of the if-else
node. Set T to ‘196’ so that the buzzer plays a G for the first four notes (count
between 0-3). Set F to ‘220’ so that the buzzer plays an A otherwise. Add a to-
bus node to the if-else output pin and name it ‘FREQ’. This will feed back into
the loop to set the FREQ pin of the buzzer-timed node.

BEAT
This part enables the buzzer pulse after beats 1-7. Use the second between
node. Add a from-bus node to X and name it ‘COUNT’. Set MIN to ‘1’ and MAX
to ‘7’. Add a to-bus node to the output pin and name it ‘BEAT’. This will feed
back into the loop as one of the conditions that will enable the clock.

ROUND
This part records when the sequence is finished. Connect a from-bus node to
the first input pin of the equal node and name it ‘COUNT’. Set the second equal
input pin to ‘8’. Connect the output pin to the count INC pin so that the count
increases when the sequence is done. Connect the input-pulse node to the
count RST pin and name it ‘RST-RND’. We will use this to reset the count at the
end. Add the output-number node to the count output and name it ‘RND’ so
that we can see the number of times the sequence has played. Connect the
pulse-on-true node to the equal output and then add the output-pulse node
and name it ‘DONE’. This will let us see when the sequence is complete.

ADD NODES TO PLAY-TUNE

7 8

COUNTING THE ROUND NUMBER

To start we need to know the current round number. We
added an output-number node (RND) to each of our
nodes to count how many times it has been played.
Connect both of these RND pins to the add node to sum
these two values and find the total round number.

11

SET BUS

Add a from-bus node
to the SET pin of
bar124 and name it
‘SET’. This bus will
initiate the bar124
sequence.

We will now set up a series of logic conditions to decide
when to play each bar. Add the following nodes to the
play-tune patch: bar124, bar3, add, defer, equal x4, or,
any, not (xod/core), button (xod/common-hardware), to-
bus x5, from-bus x9 (xod/patch-nodes).

DEFER AND RND BUS

9

We will be creating a
feedback loop again,
so add a defer node to
the add output. Then
add a to-bus node to
this and name it ‘RND’.

PLAYING BAR 1

10

We will use the button on the board to initiate round 1.
Set the button PORT pin to ‘D6’ and PRS pin to ‘True’.
Then connect the PRS pin to the not node. Connect not
output to one of the inputs of any. Leave the other any
input unconnected for now. Add a to-bus node to the
not output pin and name it ‘SET’.

Sequences and Loops

68

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

69

13

BAR124 BUS

Add a from-bus node
to the other any input
(see Step 10). Name it
‘BAR124’. This will set
the bar124 sequence
after bars 1 and 3.

PLAYING BAR 3 AND BAR3 BUS

We want bar3 to play at the end of bar 2. Add a from-
bus node to the input of the third equal node and name
it ‘RND’. Set the second input of equal to 2. Add a to-
bus node to the output and name it ‘BAR3’. Add a from-
bus node to the SET pin of bar3 and name it ‘BAR3’.
This bus will initiate bar3 after bar 2.

14

PLAYING BARS 2 AND 4

We also want to initiate bar124 at the end of bars 1 and 3. Use two equal nodes. Connect
a from-bus node to the first input of each and name them both ‘RND’ so that they receive
the round number. Set the second input of one to ‘1’ and the other to ‘3’. Connect the
outputs of both nodes to the input pins of the or node. Add a to-bus node to the output of
or and name it ‘BAR124’.

12

15 16

RESETTING THE SEQUENCE RST BUS

Name both from-bus
nodes ‘RST’. Add one
to the RST pin of
bar124 and one to the
RST pins (RST-RND,
RST-BEAT) of bar3.

EXPERIMENT!

Congratulations,
you’ve completed the
final task! Your final
patch should look
something like this.

Play around with this
patch and the nodes
you have used. Try
creating a different
tune. Or try to make
the LED flash along in
time with the notes.
The possibilities are
endless now that you
understand the core
principles.

After round 4 we want to reset the sequence so that the
round count returns to 0. We added RST pins to our
bar124 and bar3 nodes for this. Add a from-bus node to
the first input of the final equal node and name it ‘RND’.
Set the second input to ‘4’ so the reset happens after bar
4. Add a to-bus node to the output pin and name it ‘RST’.

Sequences and Loops

UPLOAD AND TEST

17

Finally, upload the
programme and test it
out by pressing the
button on your board!

18

70

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

71

Comment Boxes
When creating a more complex programme like this it is often useful to include comment boxes,
both to help keep track of what you are doing, and to make it easier for others to follow your
workflow. This is the XOD equivalent of ‘commenting out’ notes when writing code.

In the example above you can see that comments have been added above each section of the
programme to describe what that part of the patch is doing. Try adding your comments to annotate
your play-tune patch. You can add a comment box by navigating to ‘Edit > Insert Comment” in the
menu bar.

You can also add formatting to your XOD comment boxes, for example:
• *Surround text with stars to add bold white text*
• **Surround text with two stars to add bold red text**
• - Use a dash before text to add a bullet list
• 1. Use a number and point before text to add a number list

You can read more about adding comments to document your nodes and XOD ‘markdown’
(formatting) on the XOD website at www.xod.io/docs/guide/documenting-nodes.

72

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Embedded hardware

2

3

4 5

1

BUZZER
Node: marcoaita/malibrary/buzzer
Settings: PORT = D5

EN = True
FREQ = 440

Used in: Task 2, Task 9

2

3 OLED SCREEN (SSD1306)
Nodes: wayland/ssd1306-oled-i2c/ssd1306-oled-i2c-device

wayland/ssd1306-oled-i2c/clear-display
wayland/ssd1306-oled-i2c/send-buffer-
to-display

Settings: ADDRESS = 3Ch
WEIGHT = 128
HEIGHT = 64
RESET = -1

Notes: Add any other nodes from wayland/ssd1306-oled-i2c
between clear-display and send-buffer-to-display.
Connect ssd1306-oled-i2c-device DEV to all DEV pins.
Connect clock node to clear-display UPD then connect
each UPD pin in turn.

Used in: Task 6, Task 7, Task 8

BUTTON
Node: xod/common-hardware/button
Settings: PORT = D6

UPD = Loop
Notes: button is automatically on and turns off with a press.

Use a not node to invert this.
Used in: Task 2

4

ROTARY POTENTIOMETER
Node: xod/common-hardware/pot
Settings: PORT = A0

UPD = Loop
Used in: Task 2

5

LED
Node: xod/common-hardware/led
Settings: PORT = D4

LUM = luminance (brightness) between 0-1
ACT = True

Used in: Task 1, Task 4

1
Grove Board Cheat-Sheet
This cheat-sheet provides a quick guide to which XOD
node or library to use for each of the inbuilt components
on the Grove All-In-One Beginner Kit for Arduino.

73

LIGHT SENSOR
Node: wayland/analog-read-no-port-check/

analog-read-no-port-check
Settings: PORT = A6

UPD = Loop
Used in: Task 8

6

6 7

8

9 10

SOUND SENSOR
Node: xod/common-hardware/analog-sensor
Settings: PORT = A2

UPD = Loop
Used in: Task 6

7
•

8 TEMPERATURE AND HUMIDITY
SENSOR (DHT11)
Node: xod-dev/dht/dht11-hygrometer
Settings: PORT = D3

UPD = Connect clock node
Notes: Setting UPD to ‘Loop’ can cause errors.
Used in: Task 3

AIR PRESSURE SENSOR (BMP280)
Node: wayland/bmp280-barometer/barometer-thermometer
Settings: MODE = 03h

OST = 02h
OSP = 05h
FILT = 04h
STDBY = 04h
UPD = Loop

Used in: Task 5

9

3-AXIS
ACCELERATION
SENSOR (LIS3DH)
Node: wayland/lis3dh-

accelerometer/accelerometer
Settings: ADDR = 19h

RATE = 07h
RANGE = 00h

Used in: Task 7

10

The guide suggests a node for each component as well
as some standard settings. Other nodes and settings
can also be used, and we encourage play with node
settings and trying new nodes where available.

74

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

LED

Dimmable light emitting diode (LED). Is connected to a pulse-width
modulated (PWM) digital port (D4). Controlled by the xod/common-
hardware/led node.

Buzzer

The piezo can be connected to digital outputs and will emit a tone when the
output is high. Alternatively, it can be connected to an analog pulse-width
modulation output to generate various tones and effects.

XOD nodes for the embedded hardware
The Grove Beginner Kit consists of a central microcontroller on an Arduino-compatible board linked to a series of ten different components on
surrounding parts of the circuit board. Within the intact board, copper traces allow the microcontroller to communicate with the components
via ports indicated above. (If needed, the individual component daughter boards can be cut from the host, and used as individual modules,
wired via the white-coloured Grove connectors. “Grove” refers to the plug standard used for interconnection of the different digital, analogue,
SPI, serial and I2C connections.

Different XOD nodes from the standard XOD installation, and from external libraries, can be used to control the different peripheral
components. These are shown below:

2

1

75

OLED screen

The OLED Display 0.96" (SSD1306) is a monochrome(white) 128×64 pixels
display matrix module with I2C Interface.

External XOD library
wayland/ssd1306-oled-i2c@0.0.7

Arduino library for OLED displays driven by the SSD1306 chip.
Communication via I2C. Wraps Adafruit_SSD1306 (https://github.com/
adafruit/Adafruit_SSD1306).

• clear-display: Clear contents of display buffer (set all pixels to off).
Changes buffer contents only, no immediate effect on display. Follow up
with a call to send-buffer-to-display, or with other graphics commands
as needed by one's own application.

• dim-display: Dim display. This has an immediate effect on the display, no
need to use the send-buffer-to-display node -- buffer contents are not
changed.

• draw-circle: Draw a circle. Writes data to display buffer. To show content
of display buffer on screen use node send-buffer-to-display.

• draw-line: Draw a line. Data written to display buffer. To show content of
display buffer on screen use node send-buffer-to-display.

• draw-pixel: Draw a pixel.

• draw-rectangle: Draw a rectangle. Writes data to display buffer. To show
content of display buffer on screen use node send-buffer-to-display.

• draw-rounded-rectangle: Draw a rounded rectangle. Writes data to
display buffer. To show content of display buffer on screen use node
send-buffer-to-display.

• draw-text: Writes string to display buffer. To show content of display
buffer on screen use node send-buffer-to-display.

• draw-triangle: Draw a triangle. Writes data to display buffer. To show
content of display buffer on screen use node send-buffer-to-display.

• draw-xod-logo: Draw XOD logo. Logo is 128 x 64 pixels.

• example-draw-shapes: Draw shapes in proportion to display size.

3

76

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

• example-rotate-display: Text will be drawn in two different directions.

• example-scroll: Performs a diagonal right scroll for 30 seconds, then
stops scrolling.

• example-xod-logo: Display and inversion of XOD logo.

• get-display-dimensions: Get dimensions of display in pixels.

• invert-display: Enable or disable display invert mode (white-on-black vs
black-on-white). This has an immediate effect on the display, no need to
use the send-buffer-to-display node -- buffer contents are not changed,
rather a different pixel mode of the display hardware is used. When
enabled, drawing BLACK (value 0) pixels will actually draw white, WHITE
(value 1) will draw black.

• rotate-display: No description

• send-buffer-to-display: Push data currently in RAM to SSD1306 display.
Drawing operations are not visible until this function is called. Call after
each graphics command, or after a whole set of graphics commands, as
best needed by one's own application.

• ssd1306-oled-i2c-device: Create SSD1306 OLED device.

• start-scroll: Activate scroll for all or part of the display. To scroll whole
display set FIRST to 00h and LAST to 0Fh.

• stop-scroll: Stop scrolling.

Button

The Grove Button is a momentary push button. It contains one independent
"momentary on/off" button. “Momentary” means that the button rebounds on
its own after it is released. The button outputs a HIGH signal when pressed,
and LOWwhen released.

4

77

Potentiometer

The potentiometer or pot, consists of an internal resistive element called the
track and a sliding contact called the wiper where end terminals are attached
to the resistive element. These allow the output of a variable voltage that is
converted to an output value of 0 to 1.

5

Light sensor

The Grove - Light sensor integrates an LS06-S photo-resistor (light
dependent resistor) to detect the intensity of light. The resistance of photo-
resistor decreases when the intensity of light increases. A dual op-amp chip
LM358 on board produces voltage corresponding to the intensity of light (i.e.
based on resistance value). The output signal is analog value, the brighter the
light is, the larger the value, with a short response time: 20 ~ 30 milliseconds.

External XOD library
wayland/analog-read-no-port-check

The device is connected to analog port 6 on the Beginner board. This is usually not connected on Arduino UNO compatible boards, so you
should use a custom analog read node that has been written by Matt Wayland (https://xod.io/libs/wayland/analog-read-no-port-check/).
This allows the output voltage of the sensor to be converted to a digital signal by the analog-to-digital-converter on your controller board.

6

78

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Sound sensor

Grove - Sound Sensor can detect the sound intensity of the environment.
The main component of the module is a simple microphone, which is based
on the L358 amplifier and an electret microphone. This module's output is
analog and can be easily sampled and tested by an Arduino microcontroller.

7

DHT11 Hygrometer (analog)

(Please note that Seeed Studio supply different version of the Grove
Beginner’s board with either the DHT11 (blue coloured) or the DHT20 (black
coloured). These devices are similar in function, but require different nodes
and communication routines!)

Grove - DHT11 Temperature & Humidity Sensor is a high quality, low-cost
digital temperature, and humidity sensor based on the DHT11 module.
DHT11 is the most common temperature and humidity module for Arduino
and Raspberry Pi. It is widely favored by hardware enthusiasts for its many
advantages such as low power consumption and excellent long-term
stability. Relatively high measurement accuracy can be obtained at a very
low cost. The single-bus digital signal is output through the built-in ADC,
which saves the I/O resources of the control board.

The Grove - Temperature & Humidity Sensor uses an upgraded version of
DHT11. The new version of the DHT11 module replaces resistive humidity
components with capacitive humidity components. The temperature and
humidity measurement range are wider. The temperature resolution is
higher.

External XOD library
xod-dev/dht@0.36.1
Nodes to work with DHT11 or DHT21 sensors, or compatible sensors:
RHT01, DHT22, DHT33, DHT44, AM2301, HM2301, AM2302, AM2303,
RHT02, RHT03, RHT04, RHT05.

• dht11-device: Represents a DHT11 sensor. Also named RHT01.

• dht11-hygrometer: Read the temperature and humidity by the DHT11
(RHT01) hygrometer sensor.

• dht2x-device: Represents a DHT21 or compatible sensor: DHT21,
DHT22, DHT33, DHT44, AM2301, HM2301, AM2302, AM2303, RHT02,
RHT03, RHT04, RHT05.

• dht2x-hygrometer: Read the temperature and humidity by the DHT21
or compatible (DHT21, DHT22, DHT33, DHT44, AM2301, HM2301,
AM2302, AM2303, RHT02, RHT03, RHT04, RHT05) hygrometer sensor.

8

79

• example-dht11: No description

• read: Reads the temperature and humidity.

• read(dht11-device): Reads the temperature and humidity.

• read(dht2x-device): Reads the temperature and humidity.

DHT20 Hygrometer (I2C)

The newer Grove - Temperature & Humidity Sensor is based on the DHT20
sensor. The DHT20 is an upgraded version of the DHT11, compared with the
previous version, the temperature and humidity measurement accuracy are
higher, and the measurement range is larger. It features I2C output.

External XOD library
wayland/dht20@0.0.3
from: ASAIR DHT20 humidity and temperature sensor (https://cdn-shop.
adafruit.com/product-files/5183/5193_DHT20.pdf). Wraps https://github.
com/RobTillaart/DHT20

• init: Initialize dht20-device.

• dht20-device: Create a dht20-device.

• read: Measure relative humidity and temperature.

• example: Patch for testing sensor. Run in debug mode.

• hygrometer-thermometer: Combines lower level nodes to create a
ready to use sensor.

80

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Air pressure sensor

The Grove BMP280 Barometer Sensor is built around Bosch BMP280, it is a
low-cost and high-precision environmental sensor that measures the
temperature and air pressure. This sensor supports both I2C and SPI
communication using a custom BMP280 Arduino library.

Grove BMP280 provides precise measurements of barometric pressure and
temperature in the environment. The air pressure can be measured in a
range from 300 hPa to 1100hPa with ±1.0 hPa absolute accuracy. It also
provides a temperature readout, for temperatures between - 40℃ and 85℃
with an accuracy of ±1℃.

Owing to its high accuracy in measuring air pressure, and known pressure
changes with altitude, one can calculate the altitude with ±1 meter accuracy,
which makes it a precise altimeter as well. It provides both I2C and SPI
interfaces for communication with the microcontroller. The board provides
alternative I2C addresses.

External XOD library
wayland/bmp280-barometer@0.0.1
Library authored by Matt Wayland for the BMP280 barometric pressure and
temperature sensor. Converted from https://github.com/adafruit/Adafruit_
BMP280_Library.

• bmp280-device: Create BMP280 device. See datasheet (https://ae-bst.
resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-
DS001.pdf) for recommended oversampling and filter settings for
specific use cases.

• calculate-altitude: Calculate altitude from atmospheric pressure.

• read-pressure: Read pressure in Pascal.

• read-temperature: Read temperature in degrees Celsius.

• example-oled-altimeter: Uses bmp280 as an altimeter and displays
altitude on an OLED screen.

• barometer-thermometer: Combines low level nodes to create a simple
to use barometer and thermometer.

• example-test-barometer-thermometer: Patch to test barometer-
thermometer node. Run in debugger.

9

Accelerometer

The Grove 3-Axis Digital Accelerometer contains a low-cost 3 axis
accelerometer (LIS3DHTR). It is based on the LIS3DHTR chip which
provides multiple measurement ranges: ±2g, ±4g, ±8g, ±16g. The tiny 3 -
Axis accelerometer can support I2C, SPI, and ADC GPIO interfaces, which
means you can choose any way to connect with your development board. In
addition, this accelerometer can also be temperature compensated to tune
the errors.

External XOD library
wayland/lis3dh-accelerometer@0.0.1
Authored by Matt Wayland to support the LIS3DH triaxial accelerometer.
Wraps https://github.com/adafruit/Adafruit_LIS3DH.

• accelerometer: Combines lower level nodes to create a simple to use
accelerometer.

10

81

• click-detector: Combines low level nodes to create a simple to use
click-detector. Detects single or double taps of the sensor.

• example-read-adc: Patch to test read-adc node. Run in debugger.

• example-read-raw: Patch to test read-raw node. Run in debugger.

• get-click: Detect single or double "click" (tap).

• get-data-rate: Get data rate.

• get-device-id: Read the ID of the lis3dh device.

• get-range: Read the g range for the accelerometer.

• lis3dh-device: Create a lis3dh device.

• read-acceleration: Read acceleration (metre per second squared) in all
three axes.

• read-adc: Read the auxiliary analog-to-digital converter.

• read-raw: Read X, Y and Z raw values.

• set-click: Configure parameters for "click" (tap) detection. See
datasheet for explanation of parameters: http://www.st.com/resource/
en/application_note/cd00290365.pdf

• set-data-rate: Set data rate.

• set-range: Set range.

• example-motion-detector: Demonstrates how lis3dh can be used as a
motion sensor. LED is illuminated if motion is detected. Push button
resets motion detector.

• example-test-accelerometer: Test of accelerometer. Run in debugger.

• example-test-click-detector: Test of click-detector. Run in debugger.

• example-tweak-settings: Demonstrates changing data-rate and range
at runtime using tweak nodes. Run in debugger.

82

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

83

Lesson 5:
Next Steps

Hardware expansion

Additional information

Case studies

Next steps
Congratulations, you have completed the first part of the No-Code
Programming for Biology beginner’s course! Starting from understanding your
board and how to programme it, through to building your own nodes and
complex sequences, this guide has taken you through how to use each of the
onboard devices, as well as how to preform a range of useful functions in XOD.

You should now be comfortable with your board and the XOD software, and
should have gained a better understanding of how these tools can be used to
create programmes and devices that respond to, and influence, their
environment. Once you understand the basic principles of programming
microcontrollers such as this, the possibilities for applications are endless.

In the remaining part of this book, we will provide information about how you
can build on these skills to start developing your own custom devices, as well
as where to find components, information and help to guide you in your next
steps. We will also provide some examples of how previous Biomaker
participants have applied these skills to real-world applications to assist with
biological research in the lab and field. Finally we provide some additional
useful information including an overview of alternative development boards, a
list of useful websites, a Grove board cheat sheet, a list of XOD nodes used in
this guide, and a glossary of terms.

OBJECTIVES

By the end of this chapter you should be able to:

• Recall where to find additional components compatible with your board.
• Recognise the different ways to connect new components to your board.
• Locate compatible XOD nodes for new devices.
• Outline some examples of how these skills can be applied to biological

research.
• Recall where to find additional information and help with building your

own devices.

Open Smart easy-plug LED breakout board connected to the Grove board

84

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

85

Hardware expansion
Additional Components

GROVE
COMPONENTS

OPEN SMART
COMPONENTS

OTHER
COMPONENTS

M5STACK

The Grove board is made by open hardware company Seeed Studio, that
provides a whole series of Grove components that are compatible with
the Grove board via simple ‘plug-and-play’ connectors. These
components can be plugged directly into the board using the white plug
sockets in the middle of the board, and the cables provided in the kit.
You can browse Grove-compatible components on the Seeed Studio
website (www.seeedstudio.com > Shop > Grove).

M5Stack is another hardware company that sells its own Grove-
compatible components which they term ‘units’. You can browse
M5Stack Grove-compatible components on the M5Stack website (www.
m5stack.com > Store > Unit).

The Biomaker Expansion kit is comprised of components from an
alternative supplier, Open Smart. Open Smart provide both an ‘easy-
plug’ system similar to the Grove system, as well as a wider variety of
components which require simple, no-solder wiring. Grove plugs are not
compatible with Open Smart plugs, so an expansion shield is required to
connect these components to the board (see p77). You can browse
Open Smart components on the Open Smart Ali Express store (www.
open-smart.aliexpress.com).

Grove and Open Smart provide easy-to-use systems for connecting
components to your Grove (or any other Arduino board), however, there
are also a staggering variety of other suppliers and components
available if you introduce a small amount of wiring and soldering.
Companies such as Adafruit, SparkFun and Seeed Studio all provide
useful electronics modules that can be easily connected to your board
by soldering, or using a prototyping shield (see p76).

Seeed Studio (Grove), Adafruit and SparkFun are all based in the USA, and you can buy
components directly from their websites, although customs fees and taxes are likely to apply.
Fortunately, many of these components are also available from UK suppliers such as Farnell
(www.uk.farnell.com), Cool Components (www.coolcomponents.co.uk), RS Components
(www.uk.rs-online.com) and Mouser Electronics (www.mouser.co.uk).

M5Stack and Open Smart are based in China and you can buy components from their
storefronts on Ali Express (www.open-smart.aliexpress.com and www.m5stack.aliexpress.com).

The wide variety of low-cost components available for working with Arduino can be daunting,
and understanding how to use and connect these components to your board can seem
complex. Below we outline some of the simple systems available for connecting new hardware
to your board, and on the next page we will discuss how to connect or wire up these
components.

There are a number of ways to connect additional components to your board, most of which make use of the board’s ‘header
sockets’. These are the yellow plastic sockets arrayed around the left and right edges of the board’s central module. Electronic
components can be wired to these sockets (either directly or via a breadboard), added as part of a shield, or connected via a
breakout board. Sometimes a combination of these methods is used. Below we explain each of these options.

Shields are modular circuit boards that piggyback
onto your Arduino to instil it with extra
functionality. They use a series of header pins
that fit directly into the header sockets. Shields
can add a variety of functions, for example
allowing the board to communicate via WiFi,
adding extra storage capacity, or accessing GPS.
Expansion and prototyping shields provide
additional sockets or header pins that allow you
to expand the capacity of your board and easily
connect any number of custom components.

Each of the small header sockets on the board
connects to one of the board’s pins (see p11). You
can wire components directly into these sockets,
but more often a breadboard or shield is used.
Breadboards are a way to easily make and test
electronic circuits. You can learn more about
them on the SparkFun website (www.learn.
sparkfun.com/tutorials/how-to-use-a-
breadboard). The hook-up wires used to connect
components usually come with two types of ends:
male and female. Female ends are like individual
sockets (similar to the header sockets), whilst
male ends are metal pins, which fit into header
and female sockets.

SHIELDS

A breakout board is similar to a shield but usually
with a single or small number of electronic
components included. They are used to make
wiring of components easier. Each of the modules
(LED, buzzer etc.) on your Grove board is
essentially a built in breakout board. It is often
easiest to purchase components as part of a
breakout board and then use electronic wiring or a
shield to connect the breakout board to the
Arduino.

BREAKOUT
BOARDS

ELECTRONIC
WIRING

Hardware expansion

Connecting Components

Left:: Wiring to an Arduino using a breadboard
Right: Male (top) and Female (bottom) wires

Open Smart shield connected to the Grove board

Open Smart easy-plug (left) and standard (right)
LED breakout boards

Image Credits: Adafruit Industries

CC

86

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

87

CONNECTING OPEN SMART EASY-PLUG COMPONENTS

Open Smart ‘easy-plug’ components are similar to Grove components, but the plugs are
not compatible. Adjust for this by plugging the easy-plug expansion shield into the
header sockets, then use easy-plug cables to plug components in your breakout board.
Again, note the name of the port you are using. Use A0-A3 for analog devices, D3, D5 and
D6 for digital devices and I2C for I2C devices. For more information see the Biomaker
website (www.biomaker.org/s/Biomaker-Easy-Plug-Expansion-Kit-Information-Sheet.
pdf).

CONNECTING GROVE COMPONENTS

Grove components come as breakout boards with white Grove sockets included. You can
use Grove cables (six are included in the Grove Beginner Kit) to connect them to the
board. Simply plug one end into the breakout board, and one end into a white socket on
the board. Note the name of the port you’re using (A0, D5). This is written below the
socket. Use A0, A2 and A6 for analog devices, D2-7 for digital devices and I2C for I2C
devices.

Hardware expansion

CONNECTING STANDARD OPEN SMART COMPONENTS

Standard Open Smart breakout boards come with male pins attached. You can use the Open Smart expansion shield and
male-male wires to easily connect these components. Plug the Open Smart expansion shield into the header sockets,
then use female-to-female wires to connect the pins on the breakout board to the pins on the expansion shield. Connect
each pin to its corresponding pin on the expansion shield. E.g. connect VCC to VCC, GND to GND and SIG to a relevant
pin (A0-5 for analog devices and D7,8,12 and 13 for digital devices). For I2C connect SDA to SDA and SCL to SCL. For
more information see the Biomaker website (www.biomaker.org/s/No-Code-Programming-for-Biology-Handbook.pdf).

Connecting Other Types of Component
Breakout boards from other companies often come without connectors. You can add connectors by soldering header
pins to them. Then you can use them like Open Smart components. For an excellent tutorial demonstrating this, see
www.rimstar.org/science_electronics_projects/pin_headers_soldering_cutting_male_female.htm.

Component conflicts
Because your Grove board already has components connected to many of the pins you may encounter clashes if
you try to connect a second device to the same pin. This may or many not disrupt your programme, depending on
the devices involved. To avoid this, prioritise use of pins without devices already attached, such as D2. If clashes
become an issue you can use a different Arduino, such as the Arduino Rich Uno R3 (provided in the Biomaker
expansion kit), or you could detach the central module of the Grove board to use separately. Note that clashes are
not an issue with I2C devices as they can be connected to the same pins and identified via their addresses.

88

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

89

90

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Documenting circuit construction
Graphical description of circuits
Fritzing is an open-source software tool that allows users to
design, document, and share electronic circuits. It is particularly
popular among hobbyists, makers, and educators due to its user-
friendly interface and ability to generate circuit schematics and
breadboard layouts.

The breadboard view allows users to create virtual circuits using a
breadboard-like interface. Users can drop-and-drag components,
such as Arduino boards, sensors, and other electronic parts, and
connect them using virtual jumper wires. This view is particularly
helpful for planning and documenting prototype circuits before
physically building them on an actual breadboard.

Fritzing has a built-in library of commonly used electronic
components, and users can create and import custom
components if needed. The software also allows users to share
their designs with the Fritzing community, making it a good
resource for learning and collaboration.

Biomaker commisioned the construction of a Fritzing part for the
Grove Beginner board, which can be downloaded at https://www.
biomaker.org: (Grove_Beginner_Kit.fzpz). An example is shown
below: before and after the wiring of an external I2C-connected
component (1602 LCD display) to the Seeedstudio Grove Beginner
board.

Fritzing can be downloaded at: https://fritzing.org

91

Biomaker project archive on Hackster.io
We have adopted Hackster.io as the web platform for documenting Biomaker projects. Hackster provides a simple
menu-driven interface for easily assembling project descriptions. As projects are entered, the identities of parts are
entered, and these provide a link to other projects that use the same components. The individual or team that owns
a project are credited with this and each participant can automatically build a portfolio of projects that they have
participated in - potentially a very useful addition to a CV.

Log in and create a project using any preliminary work as a guide (select the blue "submit a project" button). Project
descriptions are private at first, and can be expanded over the course of the work. Projects can be branched to
create a portfolio of related activities, and ultimately published. This has the effect of advertising your project to the
over 2 million users of Hackster, with a 1-page project description that can be made accessible freely across the
Internet. You can submit your project to the Biomaker platform (https://www.hackster.io/biomaker). Hackster
handles the mechanics of integrating your project with 10,000's of existing projects. Hackster provides a knowledge
base with a wide range of helpful information to help get started (http://help.hackster.io/knowledgebase).

92

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Hardware stands
Totem are an engineering company based in Lithuania (https://totemmaker.net) who have created a unique system for highly-adaptable
construction of small scale elements like instrumentation chassis and robots. The design of the Totem system is based on several
principles: (i) key parts are plastic beams that can be easily cut to custom dimensions, (ii) the beams are connected via modular metal
connectors to create complex and sturdy structures, (iii) the building blocks have dimensions in 5 and 10 mm increments for simple
assembly, (iv) brackets allow simple integration of third-party parts, like electronics, mechanics and custom 3D printed parts. The system is
very well suited for DIY projects and rapid construction of customised prototypes, including prototype instrumentation. Totem distributes a
wide range of part and project kits worldwide.

The engineers at Totem have put together a low-cost kit specifically to hold the Seeed Studio Grove Beginner Kit. Details can be found at:
(https://totemmaker.net/product/totem-rack-for-grove-beginner-kit). This stand is useful for mounting the Beginner Kit board along with a
mini breadboard and space for mounting other components. The stand is useful in an educational context providing a more rigid package,
and keeping loose parts together in a shared environment. Another benefit is that the customisable nature of the Totem components allows
easy accommodation of other components and form factors (see facing page). Complete TotemMaker Kits are available for flexible designs
(https://totemmaker.net/product/totem-maker-kit).

Below: Images from the Totem instruction manual for self-assembly of the Grove Beginners Kit rack. Step-by-step instructions are
provided. Inset shows some of the various joints that can be constructed from cut plastic beams and modular metal connectors.

93

94

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Connecting external hardware
There are several electrical standards for connecting electronic devices to an Arduino board, depending on the specific
requirements of your project. Here are some common methods:

Digital Input/Output pins: These pins can be used to connect devices that require simple on/off signals, such as LEDs, switches, or
buttons. You can set these pins as INPUT or OUTPUT using the pinMode() function in the Arduino code.

Analog Input pins: Analog input pins allow you to connect devices that produce a range of voltage levels, like sensors (e.g.,
temperature, light, or sound sensors). The Arduino can read these varying voltage levels using the analogRead() function and
process the data accordingly.

PWM (Pulse Width Modulation) pins: Some digital pins on the Arduino can produce PWM signals, which can be used to control
devices like servos, motors, or LED brightness. You can generate PWM signals using the analogWrite() function in your code.

Serial Communication: The Arduino board supports serial communication through its TX (transmit) and RX (receive) pins. This
enables communication with devices like GPS modules, Bluetooth modules, or other microcontrollers. You can use the Serial
library in your Arduino code for serial communication.

I2C (Inter-Integrated Circuit) Communication: I2C is a communication protocol that allows multiple devices to be connected using
only two pins (SDA for data and SCL for the clock). This is useful when connecting devices like displays, sensors, or EEPROM
memory chips. The Wire library is used to implement I2C communication in Arduino code.

SPI (Serial Peripheral Interface) Communication: SPI is another communication protocol that uses a master-slave configuration. It
requires four pins: MISO (Master In Slave Out), MOSI (Master Out Slave In), SCK (Serial Clock), and SS (Slave Select). SPI is often
used with SD cards, displays, and sensors. The SPI library can be used to implement SPI communication in your Arduino code.

Choose the appropriate method based on your project's requirements and the specific electronic devices you want to connect to
your Arduino board. It's also crucial to consider the power requirements of the devices, ensuring the correct voltage supply (3V vs
5V) and that power consumption doesn’t exceed the Arduino's power supply limits.

95

A breadboard is a useful tool for physically connecting components to an Arduino board without soldering. It allows you to
create temporary circuits and test your designs before finalising them.

Place components on the breadboard, inserting the leads of components into the breadboard's holes. Each row of holes is
electrically connected, forming a node. When placing components, ensure their leads do not share the same node to avoid
short circuits. Some breadboards have power rails that run along the sides of the breadboard and provide 3V or 5V power
and ground connections for your components.

Two simple solutions are show above, with mini breadboards mounted on an Arduino-compatible shield (left) and a Seeed
Studio Grove board (right). Both allow direct connection to the Beginner board, and assembly of small custom circuits.

Breadboards are intended for prototyping and testing circuits. Once you've verified that your circuit works correctly, you can
create a more permanent solution by soldering components on a modular copper-surfaced perfboard or by designing a
custom printed circuit board (PCB).

96

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Electrical connections

Analog port(s)Digital port(s)

Grove connectors
The microcontroller board in the Beginner Kit is covered with 12 Grove connectors (see facing page). The Grove connector
standard was developed by Seeed Studio as a modular, easy-to-use system for connecting electronic components. It simplifies
prototyping and development by eliminating the need for soldering and providing a complement to breadboarding.

The Grove system uses 4-pin connectors with a standardised 2.0mm pitch, which carry power (VCC and GND) and either digital or
analog signals, depending on the module. There are 4 different types of Grove connector interface that provide access to digital,
analog, I2C, and UART ports, respectively.

The Grove connector has four pins numbered one through four, as shown in the image opposite. The cables are color-coded: red is
power and black is ground; this is always the case no matter what peripheral you connect, but pins 1 (yellow) and 2 (white) vary in
function according to the Grove module being connected.

• pin 1 - Yellow (Primary digital I/O or analog input, SCL on I2C connector, or Rx serial receive on serial port)
• pin 2 - White (Secondary digital I/O or analog input, SDA on I2C Grove connector or Tx serial transmit on serial port))
• pin 3 - Red - VCC on all Grove connectors (5V for the Beginner Kit board, but can be 3V on other microcontroller boards)
• pin 4 - Black - GND on all Grove connectors

The Grove connector cables are identical, just carrying different signals. Cables can only be inserted into the corresponding plugs
in a one way, so no chance of mis-wiring.

Seeed Studio manufacture a wide range of Grove modules, including sensors, actuators, displays, and communication devices.
Generally, these can be directly plugged into a suitable corresponding Grove socket and is then software-accessible from the
microcontroller. However, it is often convenient to also access other devices that are not Grove compatible (see below). These
might be newer or cheaper devices accessible via pins on a breakout board. Aliexpress is a convenient source of cheap electronic
devices in this format. In these cases, the Grove Breadboard - a mini breadboard on a printed circuit board with in-built Grove
connector (see previous page) can be very useful.

Alternatively, devices can be connected via Grove cables that have open leads or sockets on the component side, or the devices
can be connected via leads to the Arduino Shield sockets at the sides of the microcontroller board.

97

I2C port Serial port

98

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

16x2 character LCD screen
Description

A 1602 liquid crystal display (LCD) is capable of displaying 2 lines of 16
characters, and is a very useful device for user feedback in
instrumentation design and debugging. The device can be obtained with
an I2C interface backpack (recommended over versions that retain a
multi-connector parallel interface) that allows serial communication with
the device. (This is the black-coloured circuit board soldered to the back
of the green-coloured LCD board). The I2C interface allows
communication with the LCD screen through two wires plus power
supply, rather than 8+ wires required by a parallel port device. The I2C
protocol allows communication with multiple devices on the same 2 wire
bus. Each device needs a unique address, usually set in the hardware.

Compatible devices are widely available from component suppliers. For
example, Biomaker sourced the I2C LCD1602 Green from the TZT store
on Aliexpress (https://www.aliexpress.com/item/1005001609811389.
html) for Stage 2 expansion kits,

Specifications

The LCD display is powered by a 5V supply and draws about 25mA with
the backlight on, and 2mA without. The green coloured backlight sits
behind black coloured characters. The characters are formed in two lines
of 16 characters in 5x7 dot matrices.

Advanced use: If you which to use multiple LCD displays on the I2C bus,
you can add solder bridges to the jumpers A0, A1 and A2 on the I2C
backpack - in order to change the address of each device, and allow
them to be individually addressed. The supplied I2C backpack has a
PCF8574T chip: and the IC address is (high order first) 0100 A2 A1 A0.
When shipped, A2~A0 are all vacant. The default I2C address therefore:
0100 111 (0x27). If you want to modify the address yourself add the
relevant jumpers, noting that floating address pad is 1, and the short
circuit is 0 after adding a solder bridge.

Important: There is a potentiometer that controls the contrast setting of

99

the display. It is a controlled by a black plastic wheel at
the front left edge of the LCD screen. (Contrast can also
be adjusted using the blue potentiometer on the I2C
backpack). The contrast setting requires fine
adjustment, and the screen will appear blank and
unresponsive if badly adjusted. If, on first use, you want
to check that the LCD screen is correctly connected (i.e.
are using the correct I2C address), use a XOD node to
switch the backlight on and off. If that works, load
some text into the screen, and adjust the contrast for
best legibility.

How to Connect

The display should be connected to the microcontroller via the Vcc (5V),
GND (ground), SDA (data) and SCL (clock) wires. Because it is common
to use multiple I2C devices, it is generally easier to connect through the
breadboard, which allows multiple devices to share the I2C signals and
power from the relevant sockets on the yellow connector on the
microcontroller board.

To connect to the Grove Beginner Kit board:
Use Dupont cables or 22AWG solid core hookup wire to connect the SDA,
SCL, 5V and GND signals on the main yellow connector for the Arduino-
compatible microcontroller to a mini breadboard. Use connected sockets
on the breadboard to further connect to the 4 pins on the I2C backpack of
the LCD display.

(Optional) Attach the LCD display module to the plastic mounting sheet
on the Totemmaker stand. For example, 3x M3 bolts and stand-offs will
work well - or you can use stick-down Velcro or other temporary
measures.

XOD support

XOD provides the software node text-lcd-16x2-i2c, that allows direct
communication with the display, with inputs for each line of the display
(see below). The address of the i2C device should be set at 27h using the
ADDR parameter.

The text display can be a very useful tool for following program
behaviour. In addition, XOD provides the watch node, a number of which
can be connected to the outputs of key nodes, and provide real-time
output of values as a programme is run in debug mode.

100

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using a 16x2 character LCD screen
XOD library

XOD provides a standard library (xod-dev/text-lcd) to drive the screen.
This includes useful nodes like text-lcd-i2c-16x2 for directly displaying
text, as well as other specialised nodes and examples (right).

The xod-dev/text-lcd library provides support for interfacing with
different text LCD displays, both 16x2 and 20x4 character screens, which
are commonly used in Arduino projects. Here are some key features
available in the library:

1. text-lcd-i2c-16x2 and text-lcd-i2c-20x4: These nodes are used to
represent the 16x2 and 20x4 character I2C-connected LCD displays,
respectively. They provide a simple way to configure and interface
with these types of displays.

2. Print-at: This node allows you to display text on the LCD screen at a
defined row and position.

3. clear: This node clears the entire display, removing any text or
symbols previously shown.

4. backlight: This node controls the backlight of the LCD display. You
can set the brightness level by providing a value between 0.0 (off)
and 1.0 (full brightness) to the LUM input.

For example: scroll down the XOD user interface to find the xod-dev/text-
lcd library, open and identify the text-lcd-i2c-16x2 node and drag onto
the work area. The node allows setting parameters for the screen, and
feeding data to the display.

(The node provides the code necessary to drive a text LCD screen with a
PCF8574 or PCA8574 I2C expander module. These usually have a value
in the range 0x20-0x27 or 0x38-0x3F. Consult LCD/expander
documentation if you want to use a different LCD display and need to
know the exact value. Also, Cesar Sosa has provided a simple XOD patch
that can be used to scan the I2C bus for connected devices: https://
forum.xod.io/t/scanner-device-i2c/1490, and can be loaded as a XOD
library cesars/i2c-scanner)

Further information:

Working with text displays: https://xod.io/docs/guide/text-lcd/
XOD tutorial: https://xod.io/docs/tutorial/108-text-lcd/
I2C communication basics: https://xod.io/docs/guide/i2c/
Details of jumper selections for adjusting display address, etc: https://
lastminuteengineers.com/i2c-lcd-arduino-tutorial/

Specifications for I2C backpack for 1602 display: https://handsontec.
com/dataspecs/module/I2C_1602_LCD.pdf

101

XOD patch to test the device

A simple way of testing the connected display is to add xod/core/
constant-string nodes, and use these to feed text to the L1 and/or L2
input ports of the text-lcd-i2c-16x2 node.

Alternatively, xod/common-hardware/pot node can be used to generate
varying values (between 0-1), and these fed to a xod/math/map node to
recast these between arbitrary values. The patch shown left produces
values between 0 and 1000 depending on the position of the
potentiometer. These can then be displayed using the text-lcd-i2c-16x2
node, and in this case, shown with a fixed text label in the first line of the
display (L1).

102

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

12 x WS2812 RGB LED Ring
Description

The LED Ring contains 12 addressable WS2812B RGB LEDs (Red-
Gereen-Blue Light Emitting Diodes), which can each be programmed
from the microcontroller. The LED ring provide illumination required in
machine vision, biomedical, fluorescence, and strobing applications - or
be used as a vivid indicator or alert for sensors and logic programs. The
use of 12 LEDs allows it to closely mimic a clock face.

The WS2812 is a popular and widely used RGB LED that integrates an
LED chip and a control circuit into a single package. The WS2812 is often
referred to as a "NeoPixel," which is Adafruit's brand name for individually
addressable RGB LEDs based on the WS2812 and similar chips. These
LEDs enable you to create colorful lighting effects and animations by
controlling each LED's color and brightness individually.

Here's an overview of how the WS2812 RGB LED works:
1. Integrated LED and control circuit: The WS2812 features an

integrated design, combining an RGB LED and a control circuit in a
single 5050 (5mm x 5mm) surface-mount package. This compact
design simplifies the manufacturing process and reduces the
number of external components needed to drive the LED.

2. Single-wire communication: The WS2812 uses a single-wire
communication protocol, requiring only one data pin to control
multiple LEDs. You can chain multiple WS2812 LEDs together by
connecting the data output (DO) pin of one LED to the data input (DI)
pin of the next LED. This allows you to create long LED strips or
complex arrangements with a large number of LEDs while
minimizing the number of pins required for control.

3. 24-bit color control: Each WS2812 LED can display 16.7 million
colors, thanks to its 24-bit color control (8 bits per color channel:
red, green, and blue). You can set the color and brightness of each
LED individually by sending a 24-bit data packet containing the
desired color values.

4. Timing-based protocol: The WS2812 communication protocol is
timing-based, relying on precise pulse widths to transmit data. A "0"
bit is represented by a short pulse (approximately 400 ns high), and
a "1" bit is represented by a longer pulse (approximately 800 ns
high). The data is sent in a specific order: green, then red, and finally
blue. The first LED in the chain receives the data, processes it, and
passes the remaining data to the next LED. This continues down the
chain until all LEDs have received their respective data.

103

How to Connect

It only requires 3 connections for the 12 LEDs (VCC (5V), GND (ground)
and DI - data ‘in’ pin). Data for LEDs is sent in serial, 24 bit for each
LED, representing 8 bit for the red, green and blue LED housed in each
device. The controller contains a 24-bit register, which takes in serial
data from the DIN pin and stores and decodes and
displays it on the respective LED.

The 24-bit register is divided into three parts, each
one is 8 bits long and holds a different brightness
value for each color. Since there are 8 bits, there
can be 256 possible brightness values for each
LED. As there are three colors, a total of close to
17 million colors are possible.

The data pins on the LED are designed to be
daisy-chained; the output of each device’s
controller is buffered to maintain signal quality
even if many LEDs are connected.

Wiring may require access to a soldering iron.
The RGB LEDs are connected in serial fashion,
and each has a particular position in the linear
sequence. The microcontroller can communicate with each and all
LEDs in sequence. In addition, LED rings (or other LED sticks or arrays)
can be daisy-chained to build interconnected LED sequences.

Each LED is individually addressable via serial digital communication
that is passed into the ring via the DI (Digital In) pin, and can be
passed through to another device via the DO (Digital Out) pin. If we are
using the ring as a solitary device, we don’t need to use the DO pin.

In order to connect the LED ring to the microcontroller, we need to
connect leads to the DI pad and supply power through the 5V and GND
(ground) pads. This can be done by directly soldering wire leads to the
relevant pads, or soldering pins, that allow connection via socketed
Dupont leads (shown left).

To connect to the Grove board:
1. Select an unused digital port on the microcontroller and connect

this to the DI port of the LED ring, either directly or via the
breadboard.

2. Connect the ground (GND) pin to a ground socket on the
microcontroller board, either directly or via the breadboard.

3. Connect the 5V (Vcc) pin to a 5V source on the microcontroller
board, either directly or via the breadboard.

Note: the LED ring is powered via the 5V supply from the
microcontroller board, which is in turn usually powered through a USB
port on a laptop or equivalent. If you notice erratic behaviour or
unexpected resets - this may be due to excessive current draw. Each
LED can draw up to 50mA at 5V and full light intensity. Also, the LEDs
are bright and sometimes dazzling to work with. You can lower the
emitted intensities (and current draw) of the LEDs by altering values in
the software.

The hardware example shown here was obtained for the Biomaker
Stage 2 kit from the TZT Five Star store on Aliexpress (https://www.
aliexpress.com/item/1005002680484101.html). Many variations on
this theme can be found at other component suppliers.

104

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using WS2812 RGB LEDs
XOD library

The standard XOD library xod-dev/ws2812 can be used to control the
addressable RGB LEDs in the supplied hardware. The library contains a
number of useful nodes, including the ability to flood all of the LEDs with
a single chosen colour (ws2812-mono), to define a pattern or sequence
of colour and to fill particular LEDs with this, or to address individual
LEDs. The XOD nodes provide code to handle all of the complicated
timing and signals to the LED devices.

If the hardware is properly connected, the general guide for setup is:
1. Create a new XOD patch: In the XOD IDE, create a new patch for your

project.
2. Add a ws2812 controller node: the library contains two nodes for

simple control of NeoPixel LED strips. The xod-dev/ws2812/
ws2812-mono node allows flooding with a single colour, while xod-
dev/ws2812/ws2812-pattern allows loading of arbitrary patterns in
conjunction with the xod-dev/ws2812/pattern node. Both allow
animation of LED displays. The library provides example patches
that illustrate the use of these different nodes.

3. Select the relevantws2812 node and set the required parameters in
the Inspector panel. Set the PORT value to the digital pin you
connected the LED strip's data pin to and set the LED_COUNT value
to the number of LEDs in your strip.

4. Add colour nodes: To set the colour of individual LEDs, use the xod-
dev/ws2812/pattern node. Drag the node to your patch and connect
colour values to the indices of the LEDs you want to control (C0 for
the first LED, C1 for the second, and so on). Connect the PAT output
pin to a xod-dev/ws2812/ws2812-pattern node. Otherwise a colour
value can be directly connected to a xod-dev/ws2812/ws2812-
mono node.

5. Add the animation nodes: To create an animation or update the
colors of the LEDs, adjust the value of the SHFT input for the xod-
dev/ws2812/ws2812-pattern node (which will have the effect of
rotating the pattern around the ring), or adjust the colour values of
either WS2812 display node.

6. Upload the program: Connect your microcontroller to your computer
and upload the XOD patch to see the RGB LEDs in action.

Two examples are shown on the facing page. Both assume that the RGB
LED ring contains 12 LED elements and is connected via D10.

The first floods all LEDs with the same colour, using the Grove Beginner
Kit button to switch the LEDs on and off, and the potentiometer to control
the hue of the emitted light. It also converts the HSL colour to RGB values
using one of the standard XOD nodes (to-rgb), and displays the value on
the LCD display, assuming it is connected.

The second example shows the definition of a static pattern consisting
of a rainbow sequence of colours, set by constant values. Each can be
set using the in-built XOD colour picker. The potentiometer on the Grove
Beginner Kit is used to set a start location for the pattern, ranging from
position 0 to12 (i.e. all around the clock face, back to the start).
There are more examples provided in the xod-dev/ws2812 library to
allow some experimentation.

Further information:
WS2812: guide to controlling NeoPixel RGB LEDs in XOD: https://xod.io/
docs/guide/ws2812-neopixel/

105

Test patches

106

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Real-time clock (DS1302)
Description

The DS1302 Real Time Clock (RTC) is a trickle-charge timekeeping chip
contains a real-time clock and calendar and 31bytes of static RAM and
communicates with a microcontroller or microprocessor via a simple
serial interface. The DS1302 real time clock and calendar provides
seconds, minutes, hours, day, date, month, and year information. The
date of the end of the month date is automatically adjusted, including
corrections for leap year. The clock operates in a 24 hours or 12 hours
format with AM and PM indicator. The module is very useful where it is
important to control time-dependent events., or to record event timing.

The DS1302 is a Real-Time Clock (RTC) integrated circuit that keeps
track of the current date and time, even when your main system or
microcontroller is powered off. It is widely used in electronic devices,
such as clocks, data loggers, and embedded systems, to maintain
accurate timekeeping. The DS1302 uses a simple serial communication
protocol called "3-Wire Interface" for communication with
microcontrollers like Arduino.

Here's an overview of how the DS1302 RTC works:
• Power supply: The DS1302 requires a power supply (typically 3.3V

or 5V) for its main operation and a small backup battery (usually a
CR2032 coin cell) to keep the RTC running when the main power
supply is disconnected. The backup battery ensures that the RTC
maintains accurate timekeeping even during power outages or
when the main system is turned off. These chips are designed to
operate on very low power and retain data and clock information on
less than 1µW.

• Timekeeping registers: The DS1302 has internal registers to store
the current time and date information. These registers include
seconds, minutes, hours, day of the week, date, month, and year.
The DS1302 also supports 12-hour and 24-hour formats, with an
option for automatic AM/PM indication in 12-hour mode.

• 3-Wire Interface: The DS1302 communicates with microcontrollers
using a simple serial protocol called the 3-Wire Interface. It requires
three pins for communication: Clock (CLK), Data (DAT), and Chip
Select (RST, CS or CE). The 3-Wire Interface is a bidirectional
protocol, allowing data to be read from or written to the RTC.

• Reading and writing data: To read or write data to the DS1302, you
need to send a command byte, followed by the data byte(s). The
command byte specifies the register address and the operation
(read or write). The data byte(s) contains the time or date
information to be read or written.

• Libraries and microcontroller support: Various libraries and code
examples are available for popular microcontrollers, such as
Arduino and Raspberry Pi, making it easy to interface with the
DS1302 RTC. For Arduino, you can use the "DS1302" library by
Henning Karlsen, which provides functions for initializing the RTC,
setting and reading the time and date, and more.

In summary, the DS1302 RTC works by maintaining a continuous record
of the current date and time using its internal registers, powered by a
backup battery when the main power supply is disconnected. The 3-Wire
Interface allows communication with microcontrollers for reading and
writing time and date data. DS1307 devices are also available, which
have similar time-keeping specs (accurate to ~1 min per month at 25ºC),
but offer an I2C interface. Devices based on the DS3231 chip offer both
I2C interface and higher accuracy (~2 min per year).

107

How to Connect

Important: the board is designed for use with a CR2302 coin cell
lithium battery (3V) for backup of the set time and date. Install a
battery if you require non-volatile storage. The estimated life of the
battery will be up to 10 years.

Find details of the DS1302 RTCmodule used in the Biomaker Stage 2
kit here: https://www.aliexpress.com/item/32833231512.html

To connect to the Grove board:
This board is set up to communicate with the Arduino micro controller
via a 3-wire interface (rather than 2-wire I2C interface). There are 5
connecting pins on the module, including the power and ground pins,
and these need to be connected to relevant ports on the central
microcontroller board on the Grove Beginner Kit. You may connect
pins on the DS1302 RTC board directly to the central yellow connector
on the Grove Beginner Kit, or use the breadboard as an intermediate
plug board. It is more convenient to use the breadboard if multiple
components need to be powered at the same time.
• Select three unused digital ports on the microcontroller. For

example, we will use ports D7, D8 and D9 in
this example.

• Connect the three control pins (marked CLK,
DAT and RST) to the digital sockets on the
central microcontroller board on the Grove
Beginner Kit - directly, or via the breadboard.

• Connect the GND pin/socket on the RTC
module and microcontroller boards - directly,
or via the breadboard.

• Connect the VCC (voltage common collector)
pin on the RTC to a 5V source on the
microcontroller board - again, directly or via
the breadboard. This RTCmodule can be
connected to 5V or 3.3V based
microcontroller boards. (The Grove Beginner
Kit uses 5V signals).

108

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using the DS1302 RTC
XOD library

The DS1302 clock can be obtained in different versions with either I2C or
3-wire communication protocols. The Stage 2 Biomaker kit contains one
of the latter, and the cesars/ds1302/ds1302 library should be loaded and
used with this board.

The ds1302 library provides a base node for control of the RTC device
(ds1302-dev), and this can be connected to ds1302-write and ds1302-
read nodes as required. In order to use the RTC, you should set the
current date-time the first time you use the clock. The write node is used
for this (example shown right). The time is then updated automatically
while the RTC is powered or connected to the backup battery.

The read node can then be triggered to obtain the current time when
required. This provides a readout of the current year, month, day,
weekday, hour, minute and second. The output can be formatted for
display, creation of a timestamp or used for calculations.

Further information:

Tutorial information: https://forum.xod.io/t/how-to-read-time-from-
non-i2c-ds1302-rtc-module/4341

Maxim DS1302 data sheet: (https://datasheets.maximintegrated.com/
en/ds/DS1302.pdf)

Note for I2C RTC devices:
(XOD provides an in-built library xod-dev/ds-rtc for use with
I2C RTC boards. The XOD website also provides a tutorial on
how to use an I2C real-time clock module in XOD - https://
xod.io/docs/guide/rtc-example/ - including examples for
formatting and handling dates in XOD.

109

Test patches

Example 1: Connect the DS1302 RTC board to ports D7, D8 and D9. One tweak node is
provided to pulse the circuit, and write timing parameters to the chip, once to initialise
the chip. A second tweak node triggers the reading of the RTC chip when required.

Example 2: A clock pulses every 200mSec, which triggers an LED to flip between states,
and triggers reading of the RTC chip. The numerical output of the RTC is formatted for
display on a 1602 LCD display - leading zeroes are padded , and
suitable labels and spacer characters are added before being sent
to the display. (see facing page)

110

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Temperature & Humidity Sensor (SHT20)
Description

The SHT20 is a digital humidity and temperature sensor developed by
Sensirion. It combines a capacitive humidity sensor and a bandgap
temperature sensor on a single chip, providing highly accurate and
reliable measurements. The SHT20 is often used in various applications,
such as weather stations, HVAC systems, and environmental monitoring.
Here's an overview of how the SHT20 sensor works:
1. Capacitive humidity sensor: The SHT20 measures relative humidity

using a capacitive sensing element. This element consists of a thin
polymer film sandwiched between two electrodes. As the humidity
around the sensor changes, the dielectric constant of the polymer
film changes, causing a variation in the capacitance between the
electrodes. The sensor measures this capacitance change to
determine the relative humidity.

2. Bandgap temperature sensor: The SHT20 measures temperature
using a bandgap temperature sensor. This type of sensor exploits
the temperature dependence of the voltage across a p-n junction in
a semiconductor material. As the temperature changes, the voltage
across the p-n junction changes, which the sensor measures and
converts into a temperature reading.

3. Signal processing and calibration: The SHT20 sensor integrates an
analog-to-digital converter (ADC) and a digital signal processor
(DSP) on-chip. The ADC converts the analog signals from the
capacitive humidity sensor and the bandgap temperature sensor
into digital values. The DSP processes these digital values, applies
calibration data stored in the sensor's memory, and calculates the
final temperature and humidity readings.

4. Communication interface: The SHT20 communicates with
microcontrollers or other host devices using the I2C communication
protocol. It supports standard and fast I2C modes, with a selectable
7-bit slave address. The sensor can be programmed to operate in
different measurement resolutions and provides commands for
initiating single-shot measurements or periodic data acquisition.

5. Power supply: The SHT20 operates with a supply voltage range of
2.1V to 3.6V, making it suitable for various applications, including
battery-powered devices. The sensor also features low power
consumption and an optional on-chip heater that can be used for
sensor self-testing or to prevent condensation in high-humidity
environments.

They come in a plastic package which leaves the sensor area open,
protecting the devices from external impact and providing long-term
stability. The SHT2x sensors are ideal for both high and low volume
applications (SHT20 - Low cost, SHT21 - Standard, SHT25 - High
Accuracy).

The devices are fully calibrated, and directly provide final measurements
as a digital value. The Stage-2 Biomaker kit contains a sensor on a
breakout board, ready for connection to the Grove Beginner Kit board, or
equivalent.

Measurement parameters for the Sensiron SHT20 sensor.
• Temperature range: -40 to 125 C(-40 to 257 F)
• Humidity range: 0 to 100 % RH
• Temperature accuracy: ± 0.5% C
• Humidity accuracy: ± 5% RH
• Interface: I2C
• Voltage range: 2.1 - 3.6 V

111

How to Connect

The module should be directly plugged into the breadboard, and
adjacent sockets can be used to plug in Dupont cables to carry
signals to-from the yellow-coloured header on the Grove
Beginner Kit board. There are only four pins that need to be
hooked up:
VCC: Module power supply - connect to 3.3V pin on the yellow-
coloured header on the Grove Beginner Kit board.
GND: Ground - connect to a ground pin on the yellow-coloured
header on the Grove Beginner Kit board.
SDA: Serial Data Input/Output for the I2C protocol - connect to
SDA socket on the yellow-coloured header on the Grove
Beginner Kit board.
SCL: Serial Clock Input for I2C the protocol - connect to SCL
socket on the yellow-coloured header on the Grove Beginner Kit
board.
(Alternatively, a Grove breadboard could be used, which can be
directly connected to a I2C Grove socket).

While the Grove Beginner Kit board runs with 5V logic levels, the
SHT-20 sensor board runs at 3.3V. Be sure to power the board
from the 3.3V pin. Because I2C is an open drain signal, one can
work without using electronic level shifters to convert the signal.
In practice, the 3.3V signals of the SHT-20 device are adequate
to communicate with the Arduino and tolerated by the the SHT-
20. However, be aware that this is not a recommend procedure,
and voltage compatible I2C buses or level converters should be
used for permanent circuits. Meanwhile, this shortcut approach
has proved stable enough for our prototyping with this device.

Choice of XOD libraries

Ther are two libraries available for use with the SHT20 sensors.
They are both available from the xod.io site,
and are justind000/ufire-sht20 and
wayland/sht2x-rh-temp. The first library
provides simple, basic support for the SHT20
device, whilewayland/sht2x-rh-temp
provides wider and deeper support for this
class of devices. For example, it provides
access sensor identifiers, testing, error
readings, etc.

112

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using the SHT20 sensor
XOD node for readout

For this example - the external library justind000/ufire-sht20 should be
imported into your XOD development environment. It provides the sht20
node, which handles communication wqith the I2C device, and delivery of
calibrated temperature and humidity values.

A pulse input is required to trigger each measurement, and after a short
delay, the temperature and humidity values are delivered for subsequent
display, or calculations.

The node is simple to operate, but contains complex inner working at the
level of both hardware and software. The integrated hardware is outlined
on the previous pages, and the operation of the node is shown below.
The node is itself composed of other nodes from the justind000/ufire-
sht20 library that control polling and readout of the SHT20 device via the
I2C serial communication protocol.

Further information:

Product page: https://www.sensirion.com/en/environmental-sensors/humidity-sensors/humidity-temperature-sensor-sht2x-
digital-i2c-accurate/

A wide range of related technical documents and application notes about the SHT-2x series can be found at:
https://www.sensirion.com/en/download-center/humidity-sensors/humidity-temperature-sensor-sht2x-digital-i2c-accurate/

Experimental comparison of multiple humidity sensors: https://wiki.liutyi.info/display/ARDUINO/Sensors

113

Test patch

Simple patches can be used to test the connected device.
First, the sht20 node can be connected to two watch nodes - and clock node can be used
to trigger measurements at regular intervals. The read process includes a delay (~150
ms) so timing should be set to avoid oversampling. Here a 1 sec delay is included.

Second, the patch can be modified to show the temperature and humidity values on the
16x2 LCD display. Text labels can be added using concat nodes, and fed to the text-lcd-
i2c-16x2 node. The SHT-20 and 16x2 LCD should be connected to the Grove Beginner Kit
board through the I2C bus.

114

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Calibrated Light Sensor (BH1750)
Description

The BH1750 is a digital ambient light sensor that accurately measures
illuminance (light intensity) in a wide range of lighting conditions. It is
commonly used in applications like lighting control systems, display
backlight control, and weather stations. The BH1750 integrates a
photodiode, an analog-to-digital converter (ADC), and an I2C interface on
a single chip, making it easy to interface with microcontrollers and other
host devices.

Here's an overview of how the BH1750 light sensor works:
1. Photodiode: The core component of the BH1750 is a photodiode

that is sensitive to light in the visible spectrum. The photodiode
generates a photocurrent when it absorbs light. The amount of
photocurrent produced is proportional to the light intensity
(illuminance) falling on the sensor.

2. Spectral response: The BH1750's photodiode has a spectral
response close to the human eye's luminosity function, also known
as the V(λ) curve. This means that the sensor's response to
different wavelengths of light closely resembles the human eye's
sensitivity, resulting in more accurate and reliable illuminance
measurements.

3. Analog-to-digital conversion: The photocurrent generated by the
photodiode is converted into a digital value using an integrated
analog-to-digital converter (ADC). The ADC resolution can be
configured to 4, 8, or 16 bits, depending on the desired
measurement accuracy and speed - from 1–65535 lux (lx)

4. I2C communication interface: The BH1750 communicates with
microcontrollers or other host devices using the I2C communication
protocol. It supports standard and fast I2C modes and has a fixed 7-
bit slave address. The sensor provides various commands for
configuring the measurement mode, resolution, and timing, as well
as reading the illuminance data.

5. Measurement modes: The BH1750 supports multiple measurement
modes, including continuous and one-time measurements. In
continuous mode, the sensor periodically measures the light
intensity and updates the illuminance data at regular intervals. In
one-time mode, the sensor performs a single measurement and
then automatically enters a low-power mode to conserve energy.

6. Power supply: The BH1750 operates with a supply voltage range of
2.4V to 3.6V, making it suitable for various applications, including
battery-powered devices. The sensor also features low power
consumption and can be put into a low-power mode when not
actively measuring illuminance.

The supplied device has a white plastic dome to provide a wide angle of
detection. It can be powered as a 3-5V device, and has a built in
electronics to allow direct digital output, bypassing additional
calculation, and calibration. It has a response close to human visual
sensitivity, across the visible spectrum.

The lux (symbol: lx) is the SI unit of illuminance and luminous emittance,
measuring luminous flux per unit area. It is equal to one lumen per
square metre. In photometry, this is used as a measure of the intensity,
as perceived by the human eye, of light that hits or passes through a
surface. It is analogous to the radiometric unit watts per square metre,
but with the power at each wavelength weighted according to the
luminosity function, a standardized model of human visual brightness
perception.

115

Typical Lux values
0.0001 lux - Moonless, overcast night sky (starlight)
0.002 lux - Moonless clear night sky with airglow
0.27–1.0 lux - Full moon on a clear night[3][4]
3.4 lux - Dark limit of civil twilight under a clear sky
50 lux - Family living room lights (Australia, 1998)
80 lux - Office building hallway/toilet lighting]
100 lux - Very dark overcast day
320–500 lux - Office lighting
400 lux - Sunrise or sunset on a clear day.
1000 lux - Overcast day; typical TV studio lighting
10000–25000 lux - Full daylight (not direct sun)
32000–100000 lux - Direct sunlight
(source: Wikipedia)

The outdoor range of light range is from < 1- 120,000 lux so the bare,
un-covered sensor will fully saturate in full sun at 54612 lux if not
adjusted or has a cover applied. In bright light, over-range values will
have a negative sign. The readings can be compensated for in the
software at higher light levels. For example, the supplied sensor
“BH1750FVI Chip Light Intensity Light Module Light ball” has a white
dome cover, and the sensor receives around 52 % of the actual light
level when directly overhead.

How to Connect

The BH1750 device communicates with the microcontroller across an
I2C bus. It can be powered from a 3.3V-5V supply.
The module is provided with a plug-in socket (XH2.54) and set of
leads. A set of male-male Dupont leads can be used to connect the
leads directly to the yellow-coloured main connector on the Grove
Beginner Kit board - or indirectly, via sockets on the supplied
breadboard.

• The SCL and DAT leads from the BH1750 module should be
connected to the SCL and SDA sockets, respectively

• The GND lead should be connected to a ground socket
• The Vcc lead should be connected to a 5V socket
• The ADDR pin can be used to select the device if you wish to use

multiple light detectors.

116

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using the BH1750 light sensor
XOD library

Download the external XOD library: vitaliysh/bh1750. This provides a
single node, bh1750, that can be used to provide readings from the
sensor. The node requires the I2C address of the device (23h) and
provides the measured light intensity as a number. Reads can be
triggered by sending pulses to the node, and the author of the node
recommends maintaining a gap between readings. There is somemore
discussion of the library on the XOD forum at: https://forum.xod.io/t/my-
node-gy-302-bh1750-light-sensor-i2c/2124

Further information:

Building PAR light meters with different digital sensors, including the
BH1750: https://ledgardener.com/forum/viewtopic.php?t=5748
BH1750 Light Sensor Practical notes- Problems and issues: http://
community.heltec.cn/t/bh1750-light-sensor-practical-notes-problems-
and-issues/1521
BH1750 Ambient Light Sensor Interfacing with Arduino: https://
microcontrollerslab.com/bh1750-interfacing-with-arduino-measure-
light/

BH1750 Datasheet: https://www.mouser.com/datasheet/2/348/
bh1750fvi-e-186247.pdf

Other comparable I2C light sensors are the:
AMS-TAOS TSL2561 and TSL2591 (higher sensitivity/accuracy) which
have dual visible and infrared photodiodes.
Broadcom APDS-9301with integrated photodiode, ADC, and I2C
interface on a single chip.
Vishay VEML7700with photodiode and an ADC with multiple gain
settings.
Maxim Integrated MAX44009with ultra-wide dynamic range and very
low power consumption. This is of particular interest for outdoors use in
bright sunlight, as the sensor can measure up to 188,000 lux, and a XOD
library is available at: denis-nabatchikov/max-44009

117

Test patch

A working test patch is shown below. This uses a clock node to generate 100 millisecond-spaced pulses to
read light values from the BH1750 device. The output from the bh1750 node is fed to the format-number
node, to remove insignificant decimal values, and produce a string for display. A concat node is used to add
the “ lux” label, and sent to the text-lcd-i2c-16x2 node for display on the LCD - which is also attached to the
I2C bus. The first line of the display shows the label: “Light intensity:” The patch provides a real-time display
of light intensity as it plays across the sensor. Images below show the light measurements taken under
ambient room light (168 lux), and after illumination with a hand-held torch (7980 lux).

118

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Colour sensor TCS3472
Description

The TCS3472 and TCS34725 are digital color light-to-digital converters
developed by AMS-TAOS. They measure the intensity of red, green, blue
(RGB), and clear (unfiltered) light, enabling it to detect a wide range of
colors and ambient light levels.

1. Photodiodes: The TCS3472 integrates four types of photodiodes on
a single chip: red, green, blue, and clear (unfiltered). Each
photodiode type is sensitive to a specific wavelength range, allowing
the sensor to detect the intensity of each colour channel (RGB) and
clear light independently.

2. Colour filters: Each colour photodiode (red, green, and blue) is
covered with a colour filter that selectively allows light of specific
wavelengths to pass through. These filters ensure that the
photodiodes respond primarily to the desired colour channel,
providing accurate colour measurements.

3. Analog-to-digital conversion: The photocurrent generated by each
photodiode is converted into a digital value using an integrated
analog-to-digital converter (ADC). The ADC resolution can be
configured to 12 or 16 bits, depending on the desired measurement
accuracy and speed.

4. I2C communication interface: The TCS3472 communicates with
microcontrollers or other host devices using the I2C communication
protocol. It supports standard and fast I2C modes and has a
selectable 7-bit slave address. The sensor provides various
commands for configuring the measurement mode, resolution, gain,
and timing, as well as reading the colour and clear light data.

5. Programmable gain and integration time: The TCS3472 allows users
to configure the gain and integration time settings. The gain setting
determines the sensor's sensitivity, while the integration time
setting controls the duration of light measurement. Adjusting these
settings enables the sensor to operate effectively in various lighting
conditions and optimize the measurement accuracy and dynamic
range.

6. Interrupt function: The TCS3472 features an interrupt function that
can be configured to trigger when the measured light intensity falls
outside a specified range, exceeds a certain threshold, or changes
by a specific amount. This feature allows the sensor to notify the
host device of significant changes in the ambient light, reducing the
need for continuous polling and saving power.

7. Power supply: The TCS3472 operates with a supply voltage range of
2.7V to 3.6V, making it suitable for various applications, including
battery-powered devices. The sensor also features low power
consumption and a power-downmode to conserve energy when not
actively measuring light.

Suitable modules with a working voltage of 3.3V/5V are available from
Aliexpress (e.g. https://www.aliexpress.com/item/1005004525849112.
html) .

119

How to Connect

The TCS3472 Color Sensor board has 7 pins:
VIN:Module power supply of 5 V
GND: Ground
3V3: Low voltage module power supply of 3.3 V
SLC: I2C Clock
SDA: I2C data
INT: Adjust I2C Address
LED: Turning on the LED

To connect to the Grove board:
• Connect four wires to pins inside one of the I2C

sockets on the central portion of the board (top right)
• Connect left-most wire (GND) to GND pin on module
• Connect the second-left wire (VCC) to VCC pin on module
• Connect the second-right wire (SDA) to SDA pin on module
• Connect the right-most wire (SCL) to SCL pin on module

(or alternatively connect directly via hookup wires and breadboard to
ports on the Grove Beginner board)

When connected to the Arduino I2C bus, XOD patches can read off a
series of calibrated values including: the intensity of light in the blue
part of the spectrum (465nm), green (525nm) and red (615nm). In
addition, the intensity of unfiltered clear light, illuminance value in lux
and colour temperature (degrees K) can be read out.

120

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using a TCS3472 colour sensor
XOD library

First, the external XOD library antoniorrg/tcs34725 should be loaded in
the XOD environment. This library provides nodes and example patches
that allow operation of the sensor. The contents of the library is show
below, and a node for reading the TCS3472 sensor is shown right.

Note that the library supports programmable switching on/off of the the
onboard white LED. This is useful for measuring the spectral properties
of reflective materials.

Further information:

Colour recognition with the TCS3472: https://www.hackster.io/
t3486784401/color-recognition-piano-62a16e
Characterisation of soil properties using a simple colour detection
device: https://www.hackster.io/antonio-ruiz/characterisation-of-soil-
properties-using-a-simple-device-6cce9b
Professional Hydroponics Light Monitoring: https://www.hackster.io/
chuygen/professional-hydroponics-light-monitoring-3547dd
Multiplexing 6 I2C TCS34725 Color Sensors: https://www.hackster.io/
sherwinchiu89/multiplexing-6-i2c-tcs34725-color-sensors-2a7272
Technical description for measuring color temperature with trhe
TCS3472: https://circuitcellar.com/research-design-hub/projects/white-
hot-measuring-color-temperature/

Download technical documents: https://ams.com/en/tcs34725#tab/
documents
Latest products in the TCS line: https://ams.com/en/color-sensors

Other I2C RGB colour sensors that may be worth exploring are the:
AMS-TAOS TCS3200 color sensor
Broadcom APDS-9960
ROHM Semiconductor BH1745
Vishay VEML6040

In addition, AMS supply a range of I2C multi-spectral light sensors that
can provide 6-18 channel detection across visible and adjacent
wavelengths (https://ams.com/en/spectral-sensing).

121

Test patch

1. Connect a TCS3472 or TCS347265 to the
Seeedstudio Grove Beginner board - either directly or
through a connected breadboard.

2. Load the example patch (example-tcs3475) from the antoniorrg/
tcs34725 XOD library

3. Assign the correct port number for the LED, and set the IC2 address
for the device. This is should be 0x29.

4. Set the LUM input to 1, to turn on the white LEDs, if you wish to
examine reflective objects

5. Place coloured objects adjacent to the sensor and read the values
for colour temparature, total luminance (lux), red,(615nm) green (525nm),
blue (465nm) and clear values.

6. Display values withwatch nodes, feed to a text or graphical display
or use to drive an RGB LED or similar indicator.

122

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

VL6180X Laser Range Finder
Description

The VL6180X is a Time-of-Flight (ToF) laser-ranging sensor developed
by STMicroelectronics. It combines an infrared (IR) emitter, a
photodetector, and a microcontroller on a single chip to measure
distance and ambient light levels. The sensor is primarily used for
proximity detection, distance measurement, and gesture recognition.

The laser range finder works by emitting a short pulse of infrared light,
detecting the reflected light from a target object, and measuring the
Time-of-Flight to calculate the distance. The sensor processes the ToF
data to ensure accurate measurements and communicates with external
devices using the I2C protocol.

The VL6180X device includes:
1. IR laser emission: The VL6180X includes a Vertical Cavity Surface

Emitting Laser (VCSEL) as an IR emitter. When the sensor is
triggered to perform a distance measurement, the VCSEL emits a
short pulse of infrared light.

2. Light reflection and detection: The emitted infrared light travels
towards the target object and reflects off its surface. The reflected
light then returns to the sensor and is detected by the integrated
photodetector. This includes silicon photo avalanche diode (SPAD)
detectors, ambient light sensors with a sensitivity < 1 Lux up to 100
kLux.

3. Time-of-Flight measurement: The VL6180Xmeasures the time it
takes for the emitted light pulse to travel to the target object and
back. This time is called the Time-of-Flight (ToF). Since the speed
of light is constant, the sensor can calculate the distance to the
target object using the following formula:
Distance = (Speed of Light × Time-of-Flight) / 2
The division by 2 accounts for the round-trip travel of the light
pulse.

4. Signal processing: The microcontroller inside the VL6180X
processes the ToF data and performs various calculations to
compensate for factors such as temperature, ambient light, and
crosstalk between the IR emitter and photodetector. This
processing ensures accurate and reliable distance measurements.

5. I2C communication: The VL6180X communicates with external
devices, such as microcontrollers, using the I2C communication
protocol. The processed distance and ambient light data can be
read from the sensor's internal registers via I2C commands.

6. Programmable settings: The VL6180X offers various
programmable settings, including adjustable ranging resolution,
ranging measurement rate, and ambient light sensing rate. These
settings allow users to optimize the sensor's performance for
specific applications and operating conditions.

The device is one of a family that an be used for different ranges. The
VL6180X can handle about 5mm to 100mm of range distance, up to
150-200mmwith good ambient conditions. For longer ranges, other
devices, such as the VL53L1X can reach out to 4 metres. The devices
are capable of relatively high sample rates of 20-50 Hz.

123

How to Connect

The sensor board has several plated holes for soldering standard 0.1”
spaced pin headers.

• Vin - this is the power pin. The chip uses 2.8V, and the board
includes a voltage regulator on board that will take 3-5VDC and
safely convert it down. To power the board, give it the same
power as the logic level of your microcontroller - e.g. for a 5V
micro like Arduino, use 5V.

• GND - common ground for power and logic
• SCL - I2C clock pin, connect to your

microcontrollers I2C clock line.
• SDA - I2C data pin, connect to your

microcontrollers I2C data line.
• GPIO - this is a pin that is used by the sensor

to indicate that data is ready. It's useful for
when doing continuous sensing. Note there is
no level shifting on this pin, you may not be
able to read the 2.8V-logic-level voltage on a
5Vmicrocontroller (we could on an arduino
UNO but no promises). Our library doesn't
make use of this pin but for advanced users,
it's there!

• XSHUT/SHDN - the shutdown pin for the
sensor. By default it's pulled high. There's a
level-shifting diode so you can use 3-5V logic
on this pin. When the pin is pulled low, the sensor goes into
shutdownmode.

To connect to the Grove board: Connect four I2C pins to corresponding
sockets on the central portion of the microcontroller board - either
directly, or via the breadboard.
• Connect the GND pin to GND
• Connect the VCC (5v) to 5V
• Connect the SDA pin to SDA
• Connect the SCL pin to SCL

These are the only connections required for normal use on the I2C bus,
if you require the device to be shutdown and turned on again (i.e
reseting the I2C address), a suitable digital port can be connected to
XSHUT/SHDN pin (port D3 is used in the example provided in the
wayland/vl6180x-time-of-flight XOD library.

124

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using a VL6180X Laser Range Finder
XOD library

Load the external librarywayland/vl6180x-time-of-flight.

The library contains nodes that allow control of the sensor,
readout and demonstration patches (right). The example1-test-
sensor patch can be used to test the connection to the device.
A second patch, example2-change-address, demonstrates how
to change the I2C address of the device - the patch will change
the address to 30h, from the default 29h. (Careful, you may
need to reset the address back to the default if you run this
patch).

The VL6180X device is a complex sensor that provides a
number of parameters for control, such as gain control, and
readouts for status, such as out-of-range distance or high light
levels.

Further information:

How do vertical-cavity surface-emitting lasers (VCSEL) work? -
https://www.sparkfun.com/news/2796 and https://en.
wikipedia.org/wiki/Vertical-cavity_surface-emitting_laser
Excellent description of time-of-flight measurements: https://
makersportal.com/blog/2019/4/10/arduino-vl53l1x-time-of-
flight-distance-measurement

VL6180X datasheet: https://cdn-learn.adafruit.com/assets/
assets/000/037/608/original/VL6180X_datasheet.pdf
Explanation of VL6180X status codes: https://www.st.com/
resource/en/design_tip/dt0020-vl6180x-range-status-error-
codes-explanation-stmicroelectronics.pdf

125

Test patch

The patch below takes readings for ambient light and measured
distances from the sensor, and displays these on a connected 16x2 LCD
display. It allows one to adjust the gain setting on the sensor, and
formats the numerical output for display of sensor values and status. It is
based on the example patch provided with thewayland/vl6180x-time-of-
flight library. An example for setting a new I2C address is also provided.

126

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

MCP9808 temperature sensor
Description

The Microchip Technology MCP9808 is a digital temperature sensor
designed to provide highly accurate temperature measurements over a
wide temperature range with low power consumption.

1. Temperature sensing: The core of the MCP9808 is a temperature-
sensitive element called a bandgap-based temperature sensor. This
sensor generates a voltage that is proportional to the absolute
temperature (PTAT), which is then used to determine the
temperature reading.

2. Analog-to-digital conversion: The voltage generated by the
temperature-sensitive element is converted into a digital value
using an integrated analog-to-digital converter (ADC). The
MCP9808 features a high-resolution ADC (12-bit or 16-bit, user-
selectable), providing accurate and precise temperature
measurements.

3. On-chip signal processing: The MCP9808 includes an on-chip
signal processing circuit that processes the digital output of the
ADC, converts it into a temperature value, and stores it in an internal
register. This processing ensures that the temperature data is
reliable and ready for use by external devices.

4. I2C communication interface: The MCP9808 communicates with
external devices, such as microcontrollers or other host systems,
using the I2C communication protocol. It supports standard and
fast I2C modes and has a user-selectable 7-bit slave address. The
sensor provides various commands for reading the temperature
data, configuring the resolution and other settings, and managing
alert functions.

5. Alert functionality: The MCP9808 features programmable
temperature alert thresholds and outputs. Users can configure the
upper and lower temperature limits, as well as the temperature
hysteresis value. When the measured temperature crosses the
defined limits, the sensor can generate an alert signal to trigger
external actions, such as activating a cooling fan or shutting down a
system.

6. Power supply and low power modes: The MCP9808 operates with a
supply voltage range of 2.7V to 5.5V, making it suitable
for a wide range of applications. The sensor also
features low power consumption and various power-
saving modes, including shutdown and continuous
conversion modes, to optimize energy usage.

The MCP9808 temperature sensor is a high accuracy
(±0.25°C), high precision (+0.0625°C) device, with a
temperature range of -40°C to +125°C. Temperature
measurements are based on silicon bandgap properties.
There are 3 address pins so you can connect up to 8 devices
to a single I2C bus without address collisions. A wide voltage
range of 2.7V to 5.5V allows use with a wide variety of 3.3V
and 5V logic devices.

Unlike other digital temperature sensors, like the commonly
used DS18B20, it does not come in through-hole package
and is most conveniently used on a breakout board PCB. The
PCB includes mounting holes, and pull down resistors for the
3 address pins.

127

Specifications

Technical specs:
• Sensing Temperature: -40ºC ~ 125ºC
• 0.0625°C resolution
• Accuracy: 0.25ºC typical
• Voltage - Supply: 2.7V ~ 5.5V
• Operating Current: 200 μA (typical)
• Operating Temperature: -40ºC ~ 125ºC
• Uses any I2C address from 0x18 thru 0x1F

How to Connect

The sensor has 8 pins: VCC, GND, SCL, SDA for I2C connection, A0,
A1 and A2 to allow you to change the I2C address of the device
(optional), and ALERT pin to allow you to set temperature thresholds
(optional).

To connect to the Grove board:
• Connect four wires to pins inside one of the

I2C sockets on the central portion of the
board (top right)

• Connect left-most wire (GND) to GND pin
on module

• Connect the second-left wire (VCC) to VCC
pin on module

• Connect the second-right wire (SDA) to
SDA pin on module

• Connect the right-most wire (SCL) to SCL
pin on module

128

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using the MCP9808 temperature sensor
XOD library

Matt Wayland has created thewayland/mcp9808-thermometer library
to use this sensor in XOD. Use the thermometer node from this library
with the default address of 18h. The TempC pin will read out the
temperature in degrees Celsius.

Further information:

Tutorial available here: https://learn.adafruit.com/adafruit-mcp9808-
precision-i2c-temperature-sensor-guide
Extreme precision measurements: https://www.analog.com/en/
technical-articles/silicon-temperature-sensing-with-precision.html

129

Test patch

Thewayland/mcp9808-thermometer library includes a
test patch called example-test-thermometer.

130

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Motion Sensor (HC-SR501)
Description

The HC-SR501 is a passive infrared (PIR) motion sensor module designed
to detect the presence of humans or animals by sensing the infrared
radiation emitted by their bodies.

1. Infrared radiation sensing: The core of the HC-SR501 is a pyroelectric
infrared sensor, also known as a PIR sensor. This sensor is sensitive to
the changes in infrared radiation that occur when a person or an
animal moves within its detection range. The surface temperature of
the human body is 36-27 ° C, and most of its radiant energy is
concentrated in the wavelength range of 8-12 um. The sensor consists
of two side-by-side sensing elements, each sensitive to infrared
radiation, but with opposite polarities. When a moving object crosses
the sensor's field of view, it generates a differential voltage across the
two sensing elements.

2. Fresnel lens: The HC-SR501 module includes a white plastic Fresnel
lens, which focuses the infrared radiation from the surrounding
environment onto the PIR sensor. The lens also increases the detection
range and divides the field of view into multiple zones, enhancing the
sensor's ability to detect motion more effectively.

3. Signal processing: The differential voltage generated by the PIR sensor
is very small and needs to be amplified before further processing. The
HC-SR501 module includes an operational amplifier (op-amp) and a
comparator to amplify and process the sensor's output. The op-amp
amplifies the differential voltage, while the comparator compares the
amplified signal with a reference voltage to determine if motion has
been detected.

4. Adjustable settings: The HC-SR501 module provides adjustable
settings for sensitivity and time delay. The sensitivity control adjusts
the detection range of the sensor, while the time delay control
determines how long the output signal stays active after motion is
detected. These settings can be fine-tuned using the potentiometers
on the module to suit different applications and environments.

5. Output signal: When motion is detected, the comparator output goes
high (logic level 1), which can be connected to a
microcontroller or other external devices to trigger
actions such as turning on a light, sounding an alarm, or
activating a motor. When no motion is detected, the
output stays low (logic level 0).

Adjustments

The sensor properties are adjustable, and a switch and
adjustable potentiometer are provided for this. It has two
modes Repeatable Trigger (H) and Single Trigger (Non-
Repeatable)(L). H mode is the default. The mode can be set
using the jumper pins on the bottom side of the board. To
switch to L mode, pull the jumper shunt off the bottom two
pins, and place it on the top two pins. In Repeatable (H) mode,
the sensor will send a high voltage when movement is
detected within range, and will stay high for a set amount of
time (T) before returning to low. The output will be the same
whether the person is still in range or not. This sensor will
reset the timer (which would otherwise turn the output off)
each time motion is detected; this would be applicable, for
example, for room occupancy lighting control where you don’t
want the lights to blink off while the unit resets.

131

In Non-Repeatable (L) mode, the sensor will go high when someone
enters the range and will stay high until they leave the range.

The time parameter (T - for H mode) and sensitivity (S) can be
adjusted using the orange potentiometer pins on the underside of
the board, using a small flat-bladed screwdriver. For proper
calibration, there should not be any movement in front of the PIR
sensor for up to 15 seconds (to allow self-calibration). After this
period, the sensor has a snapshot of its viewing area and it can
detect movements. When the PIR sensor detects a movement, the
output will be HIGH, otherwise, it will be LOW.

How to Connect

The sensor has three pins - VCC, OUT and GND (labels may be
below the white plastic lens). To connect to the Grove Beginner Kit
board:

Choose an unused digital port (We are using either D2 or D10 in the
examples below)
• Connect three pins to the connector in the central portion of the

board using Dupont jumper cables (this can be either a direct
connection, or via the breadboard)

• Follow the pin identifications shown directly above. (pin labels
on the PIR sensor may be underneath the white plastic lens -
you can lift the lens to check pin names and see the
pyroelectric sensor)

• Connect the Ground pin on the PIR module to a GND socket on
the microcontroller connector

• Connect the Power pin on the PIR module to a 5V socket on the
microcontroller connector

• Connect the Output pin on the PIR module
to the chosen digital port socket on the
microcontroller connector

132

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using the HC-SR501 motion sensor
XOD library

The output from the sensor is a simple digital on/off signal. Use the the
digital-read node from the xod/gpio library. The SIG output pin will read
‘true’ if movement has been detected and ‘false’ if not.

Further information:

How does a PIR motion sensor work? See: https://lastminuteengineers.
com/pir-sensor-arduino-tutorial/
Working principle: https://robu.in/pir-sensor-working-principle/

Specifications

• Wide range of input voltages varying from 4.5V to 20V (+5V
recommended)

• Output voltage is High/Low (3.3V TTL)
• Can distinguish between object movement and humanmovement
• Has to operating modes - Repeatable(H) and Non- Repeatable(H)
• Cover distance of about 120° and 7 meters
• Low power consumption of 65mA
• Operating temperature from -20° to +80° Celsius
• Delay time: 5-200S (can be adjusted, default 5s +-3%)
• Blockade time: 2.5 S (default)
• Mode adjustment: yellow jumper pin on underside of the

board, pull up yellow jumper shunt and place over
bottom to pins for H mode and top two pins for L mode,
H is default

• Sensitivity adjustment: orange potentiometer screw next
to mode pins, switch between 3-7 meters, clockwise to
high anti-clockwise to low

• Time adjustment: orange potentiometer screw further
away frommode pins, switch between 3 sec - 5 min,
clockwise to long anti-clockwise to short

133

Test patches

Test patch 1 (left)
Set port to D2 (or whichever port you are using) and UPD to ‘Continuously’.
Connect SIG to a watch node, or to an led node to get a visual output. Upload
and debug.

Test patch 2 (above)
Here the PIR detector is connected to port D10. The status of the sensor
(digital-read) is polled every 0.1 seconds, driven by pulses from the clock
node. The output of the device is sent to a watch node and the on-board LED
(led node). The PIR detector status is also sent to an if-else node. If the
detector is triggered, the LED will light, and the true condition results in
sending the “Warning: close” message to the LCD display via the text-lcd-
i2c-16x2 node. A “Proximity:” label is displayed on the first line of the
display.

134

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Radar Proximity Sensor (RCWL-0516)
Description

The RCWL-0516 is a radar-based proximity sensor module that detects
the presence of objects, humans, or animals within its sensing range. It
uses microwave frequency signals to detect motion.

1. Microwave signal emission: The RCWL-0516 module includes a
microwave generator that emits continuous-wave microwave
signals at a specific frequency, usually around 3.2 GHz. These
signals propagate outward from the module's antenna.

2. Signal reflection and reception: When an object, person, or animal
moves within the sensing range of the module, the emitted
microwave signals reflect off the object and return to the module.
The module's antenna receives the reflected signals.

3. Doppler effect: As the object moves, the frequency of the reflected
signals changes due to the Doppler effect, a phenomenon
discovered in 1842 by the Austrian physicist Christian Doppler. The
Doppler Effect describes a change in frequency observed by a
stationary observer when the source of the frequency is moving..
The Doppler effect causes the frequency of the reflected signals to
increase when the object is moving towards the sensor and
decrease when moving away from it. This change in frequency is
directly related to the speed of the object.

4. Signal processing: The RCWL-0516 module processes the received
signals to extract the Doppler frequency shift. The module includes
a mixer that combines the emitted and received signals, producing
an output signal with a frequency equal to the difference between
the emitted and received signals (the Doppler shift). This output
signal is then filtered and amplified to obtain a clear and usable
signal.

5. Motion detection: The processed Doppler shift signal is analyzed to
determine if motion has occurred. If the signal's amplitude exceeds
a predetermined threshold, the module concludes that motion has
been detected and triggers an output signal.

6. Output signal: The RCWL-0516 module provides a digital output
signal that goes high (logic level 1) when motion is detected and
stays low (logic level 0) when no motion is detected. This output
signal can be connected to a microcontroller or other external
devices to trigger actions, such as turning on a light, sounding an
alarm, or activating a motor.

Device operates at ~3.2GHz/20 - 30mW. The device has a sensitivity
range of ~7 meters. When triggered its trigger output pin will switch from
(LOW) 0V to high (3.3V) for ~ 2 to 3 seconds before returning to its idle
LOW state. The device does not measure the distance to the detected
object or its velocity, just its presence.

Component side should face detection area for maximum sensitivity. Do
not place metal objects within 1cm of antenna. Trigger out - HIGH (3.3V)
motion / LOW nomotion. Note that the 3V3 pin is a 3.3-volt output, not a
power supply input. The device has an integrated 3.3 volt voltage
regulator which can provide up to 100 mA of current for powering
external logic circuitry.

The VIN pin is the positive power supply input, accepting any voltage
from 4-volts to 28-volts. The RCWL-0516 does not consume very much
current and can easily be powered by the 5-volt output from an Arduino
or a Raspberry Pi. The microwave antennas are integrated onto the small
printed circuit board, making it a self-contained unit.

135

The RCWL-0516 also support an optional cadmium disulphide
light-dependent resistor (LDR) to allow the device to operate
only in darkness. This can be very useful in light control
applications. The light dependent resistor (LDR) can be attached
to the “CDS” pins. The LDR can actually be hooked up two ways:
(i) Using the two CDS pads on the top of the sensor printed
circuit board. (ii) By connecting one end to the CDS pin on the
main terminal section and the other end of the LDR to ground.
The light sensor will disable the device when it detects ambient
light. You may also use the CDS pin as an Enable control for the
module.

Pin 9 is pulled up (=output enable) by a 1M resistor. Attaching
the optional CDS LDR will pull pin 9 down (=output disable)
when it is light (i.e. the LDR's resistance drops below ~269k
assuming no resistor R-CDS installed). R-CDS allows you to add
a resistance in parallel with the onboard 1M pull-up resistor to
adjust the light level at which pin 9 is pulled <0.7V.

The RCWL-0516 radar proximity sensor offers advantages over
other types of motion sensors, such as the ability to see through
non-metallic materials and immunity to environmental factors
like temperature, humidity, and ambient light.

How to Connect

RCWL-0516 Pinout:
• VIN — 4V - 28V DC power supply input
• CDS — Sensor disable input (low = disable) (For LDR

sensors)
• GND — Ground
• 3volt— DC output (100 mAmaximum)
• OUTPUT — HIGH /LOW(3.3 V) (according to the motion

detection)

To connect to the Grove board:
1. Solder pins to the RCWL-0516 board
2. Connect left-most wire (GND) to GND pin on module
3. Connect the second-left wire (VCC) to VIN pin on module
4. Connect the right-most wire (D2) to OUT pin on module

136

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using the RCWL-0516 proximity sensor
XOD library

The sensor provides a simple output signal. Use the the digital-read node
from the xod/gpio library. The SIG output pin will read ‘true’ if movement
has been detected and ‘false’ if not.

Further information:

Basic circuit for use of the RCWL-0516: https://maker.pro/arduino/
tutorial/arduino-motion-detector-using-a-microwave-proximity-sensor
Experiments with the RCWL-0516: https://dronebotworkshop.com/rcwl-
0516-experiments/
RCWL-0516 information: https://github.com/jdesbonnet/RCWL-0516
Component info: https://components101.com/sensors/rcwl0516-
microwave-diatance-sensor-module-datasheet-pinout-features-
working
Electroschematics info: https://www.electroschematics.com/get-
started-microwave-radar-motion-sensor/

137

Test patch

Set port to D2 (or whichever port you are using) and UPD to
‘Continuously’. Connect SIG to a watch node, or to an led node to get a
visual output. Upload and debug.

138

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Weight sensor (HX711)
Description

The HX711 is a precision 24-bit analog-to-digital converter (ADC)
designed for weight scale applications and other force measurement
systems. It is typically used in conjunction with load cells, which are
sensors that convert mechanical force into an electrical signal. The
HX711 amplifies the small electrical signal from the load cell and
converts it into a digital value, enabling accurate weight measurements.

1. Load cell sensing: Load cells are the primary sensing elements used
in weight scales. They are typically made from a strain gauge
bonded to a metal structure. When a weight is applied to the load
cell, the metal structure deforms, causing the strain gauge to
change its resistance. This change in resistance is proportional to
the applied force or weight.

2. Wheatstone bridge: Load cells are often configured as a Wheatstone
bridge, which is a circuit arrangement that allows for accurate
measurement of the change in resistance. The Wheatstone bridge
converts the change in resistance caused by the applied force into a
small differential voltage.

3. Signal amplification: The differential voltage generated by the load
cell is very small (in the range of millivolts) and needs to be
amplified before further processing. The HX711 includes a
programmable gain amplifier (PGA) to amplify the small voltage
signal from the load cell. The gain can be set to either 32, 64, or 128,
depending on the application requirements and the desired
sensitivity.

4. Analog-to-digital conversion: The amplified voltage signal is then
converted into a digital value using the integrated 24-bit analog-to-
digital converter (ADC) in the HX711. The high-resolution ADC
ensures accurate and precise weight measurements.

5. Data output and communication: The HX711 communicates with
external devices, such as microcontrollers, using a simple two-wire
serial interface. The digital weight data can be read from the HX711
by sending clock pulses to the module and reading the serial data
output. The HX711 supports a simple communication protocol that
requires no additional components or complex programming.

6. Power management: The HX711 operates with a supply voltage
range of 2.6V to 5.5V and includes power management features
such as power-down and sleep modes. These features help to
reduce power consumption in battery-operated devices and other
low-power applications.

Load cells

Common straight bar load cells are made from an aluminum
alloy and are capable of reading a capacity of 1Kg/2Kg/3Kg/
5Kg/10Kg/20Kg. These load cells have four strain gauges that
are hooked up in a Wheatstone bridge formation. The load cells
feature two M5 sized through-holes for mounting purposes. The
load cell needs to be mounted in a way that allows a supported
weight to apply a direct lateral force.

A load applied to a strain gauge triggers a change in resistance
that can produce an output voltage proportional to the applied
load. This relationship between strain and voltage can be used

139

for calibrated weight measurement. Load cells are
commonly used due to their linearity, cost
effectiveness, and ease of implementation.

The HX711 is a 24-bit analog-to-digital converter
translates the small changes in strain from the load
cell into 24-bit changes in voltage (Arduino 0-5V).
This allows the Arduino to resolve weight (mass)
changes down to the range of the load cell (typically
500g, 1kg, 5kg, or more) divided by half the bit depth (2exp23). For a
1kg load cell, this results in mass change detection down to 0.0001g.
In practice, however, the analog-to-digital converter and load cell both
can have inherent noise (electrical and mechanical) which results in a
much lower precision closer to 0.1% of the measurement value.

Model: YZC-133 (as supplied with the Stage 2 Biomaker kit), Rated
Load: 1Kg, Rated Output: 1.0 0.15mV / V, Nonlinear: 0.03% F.S,
Hysteresis: 0.03% F.S, Repeatability: 0.03% F.S, Creep (5 minutes):
0.05% F.S, Temperature Effect on Output: 0.003% F.S / C, Temperature
Effect on Zero: 0.02% F.S / C, Zero Balance: 0.1000 mV / V, Input
Impedance: 1066 ±20% Ω, Output Impedance: 1000 ±10% Ω, Insulation
Resistance: 2000 MΩ, Recommended Operating Voltage: 5V,
Maximum Operating Voltage: 10V, Material: Aluminum

How to Connect

1. Connect the red wire to the E+ and the black wire to the E- output
of the HX711 module. Choose the red and black wire pair to be
the power wires of the load cell. E+ and E- are the sensor power
outputs of the HX711 module. The polarity doesn't matter. Pick
red to be the positive side and black to be the negative side to
follow a common convention. Switching red and black will only
invert the calibration parameter in the software.

2. Connect the green wire to the A+ and the white one to the A-
inputs of the HX711 module. A+ and A- are the measurement
inputs of the HX711 module. Like with the power wires, the
polarity is not important. You just need to recalibrate in the
software if you switch them.

3. Connect the GND of the HX711 module to the Arduino GND and
VCC to the Arduino 5V pin. HX711 also works with 3.3V. If you
have some other microcontroller that runs on 3.3V, you can use
3.3V instead of 5V.

4. Connect the DT and SCK of the HX711 module to any of the
Arduino digital IO pins. In the schematic, use pins 4 and 5, since
those are the default pins for the examples of the "HX711_ADC"
library. If you want to use interrupts to update scale data, then
you should connect the DT output to an interrupt enabled pin of
the Arduino. For Uno/Nano, those are pins 2 and 3.

140

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using a component
XOD library

The external library gabbapeople/hx711 should be loaded into
XOD. This library provides a series of nodes and patches that
support the HX711.

Further information:

Source of item: https://www.aliexpress.com/item/
1005001418508621.html
Arduino Weighing Scale with Load Cell and HX711: https://
makersportal.com/blog/2019/5/12/arduino-weighing-scale-
with-load-cell-and-hx711
How load cells work: https://www.anyload.com/load-cell-force-
transducer-how-it-works/
Getting Started with Load Cells: https://learn.sparkfun.com/
tutorials/getting-started-with-load-cells

There are a number of designs for 3D printed stands that can be
adapted for the provided load cells. 3D printed mounts to
support load cells: https://www.thingiverse.com/thing:3129439
and https://www.prusaprinters.org/prints/32094-load-cell-
mount

141

Test patches

The gabbapeople/hx711
library provides patches
for calibration (upper
image) and measurement
(lower image) using the
HX711 device.

142

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Water quality sensor (TDS Meter V1.0)
Description

A Total Dissolved Solids (TDS) water quality sensor is a device used to
measure the concentration of dissolved solids in water, which is an
important parameter for evaluating water quality in various
applications, such as environmental monitoring, hydroponics,
aquariums, and water treatment systems. TDS sensors typically
measure the electrical conductivity (EC) of the water and use this
information to estimate the TDS concentration. TDS is generally
expressed in parts per million (ppm) or as milligrams per liter (mg/L).
TDS is directly related to the quality of water i.e., the lower a TDS figure,
the purer the water. As an example, reverse osmosis purified water will
have a TDS between 0 and 10, whereas tap water will vary between 20
and 300, depending on where you live in the world.

1. Probes: TDS sensors usually have two probes or electrodes that
are immersed in the water sample.

2. Electrical conductivity measurement: The basic principle behind
TDS sensors is that the dissolved solids in water increase its
electrical conductivity. The sensor applies a small voltage across
the probes, which creates an electric field in the water. The
dissolved ions in the water allow for the flow of electric current
between the probes.

3. Current measurement: The TDS sensor measures the current
flowing between the probes. This current is directly proportional
to the electrical conductivity of the water, which is influenced by
the concentration of dissolved ions.

4. Temperature compensation: The electrical conductivity of water is
affected by temperature. To improve the accuracy of the TDS
measurement, water temperature can be measured, and
conductivity measurements corrected, according to the water
temperature to provide a more accurate and consistent TDS
readings.

5. TDS estimation: The electrical conductivity measurement is then
used to estimate the TDS concentration in the water. This is
typically done using a conversion factor that relates the
conductivity to the TDS concentration. The conversion factor can
vary depending on the types of dissolved solids present in the
water and the sensor's calibration.

6. Signal output and communication: TheisTDS sensor outputs the
TDSmeasurement as an analog voltage signal. The analog TDS
sensor should be connected to the analog input of a
microcontroller for further processing. This sensor supports 3.3 ~
5.5V wide voltage input, and 0 ~ 2.3V analog voltage output,
which makes it compatible with 5V or 3.3V Arduino boards.

Calibration of the sensor
An analog value that will reflect the TDS content of the liquid can be
relatively easily measured. However, due to the individual differences in
different TDS probes and control boards, and no onboard temperature
compensation, the measured value can have some errors.Therefore, to
obtain a more accurate TDS value, calibration is required before
measurement. In addition, it is possible to connect a temperature
sensor for temperature compensation to improve accuracy. Normally,
the TDS value is half of the electrical conductivity value, that is: TDS =
EC / 2.

143

During the calibration, liquid solutions of known electrical conductivity
or TDS value is needed (e.g. 0 ppm, 500 ppm, and 1000 ppm).TDS
values can also be measured using a commercial TDS pen if you do
not have a standard buffer solution.

1. Measure the sensor output: Immerse the TDS
sensor's probes in the calibration solution
with the lowest TDS concentration (0 ppm,
which is distilled or deionized water). Upload a
simple code to the microcontroller to read the
analog voltage from the sensor and display it
on the serial monitor or a display device. Note
down the voltage reading for this calibration
point.

2. Repeat the measurement for other calibration
solutions: Immerse the sensor's probes in the
other calibration solutions with known TDS
concentrations (e.g., 500 ppm and 1000 ppm).
Record the analog voltage readings for each
calibration point.

3. Calculate the calibration curve: Plot the
voltage readings against the known TDS concentrations on a
graph or spreadsheet. Calculate a linear regression line (y = mx +
b) that best fits the data points, where y is the TDS concentration,
x is the voltage reading, m is the slope, and b is the y-intercept.
This calibration curve will allow you to convert the sensor's
voltage output to TDS values.

4. Implement the calibration curve in your code: Modify your
microcontroller code to include the calibration curve parameters
(slope and y-intercept). Use these parameters to convert the
sensor's voltage output to TDS concentration in your application.

5. Test the calibrated sensor: Immerse the sensor's probes in water
samples with unknown TDS concentrations and use the calibrated
sensor to measure their TDS values. You can verify the accuracy
of the measurements by comparing them with TDS values
obtained using a commercial TDSmeter or lab-grade equipment.

Remember that calibration may need to be repeated periodically or
when the sensor's performance changes due to aging, contamination,
or other factors.

Specifications
1. Input Voltage: 3.3 ~ 5.5V
2. Output Voltage: 0 ~ 2.3V
3. Working Current: 3 ~ 6mA
4. TDSMeasurement Range: 0 ~ 1000ppm
5. TDSMeasurement Accuracy: ± 10% FS (25℃)
6. TDS probe with Number of Needle: 2

How to Connect

The connection of TDS Sensor with Arduino is fairly simple. Connect
the VCC to Arduino 5V & GND to GND. Connect its Analog pin to any
analog pin of Arduino, e.g. analog pin A1 of Arduino.

144

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using the TDS Meter (V1.0)
XOD library

Use analog-sensor node from xod/common-hardware library to read
values directly from the sensor. Additional nodes must be used to
estimate TDS values after calibration and to correct for different water
temperatures.

As a starting point, use the following nodes:
• Capture the analog value using analog-input node (from the xod/

common-hardware library): This node reads the sensor output
connected to an analog pin.

• Calculate the voltage using amultiply node (from the xod/math
library): This node is used to convert the ADC reading to voltage,
assuming a 5V supply. Set the values of the multiply nodes: The first
one should have a value of (5.0 / 1023.0) for the conversion from
ADC reading to voltage.

• subtract node (from the xod/math library): This node calculates the
difference between the voltage and the intercept of the calibration
curve.

• divide node (from the xod/math library): This node calculates the
conductivity by dividing the difference by the slope of the calibration
curve. (The intercept and slope values are obtained by calibrating
the TDS sensor)

• multiply nodes (x2) (from the xod/math library): These nodes
calculate the TDS by multiplying the conductivity by the conversion
factor and cell constant.

Calculating values for conversion

1. Measure conductivity: Immerse the sensor's probes in different
calibration solutions and measure the output voltage or conductivity
values.

2. Calculate slope and intercept: Plot the output values against the
known TDS or conductivity concentrations on a graph or
spreadsheet. Perform a linear regression to find the best-fit line (y =
mx + b) that relates the output values to the concentrations, where y
is the TDS or conductivity concentration, x is the output value, m is
the slope, and b is the y-intercept.

3. Determine the conversion factor: If you have calibrated the sensor
using TDS values, you can assume that the conversion factor is
already included in the slope. If you calibrated the sensor using
conductivity values, you'll need to use a conversion factor to convert
conductivity to TDS. This factor can vary depending on the
composition of the dissolved solids and the type of sensor. A
common conversion factor for TDS is 0.5 (TDS = 0.5 * conductivity).

4. Determine the cell constant: The cell constant (K) of a conductivity
sensor is a property that describes the geometry of the sensor's
electrodes and the efficiency of the sensor in measuring
conductivity. You can estimate it by calibrating the sensor with a
standard solution with a known conductivity and using the following
formula: K = Conductivity / (Voltage output * Conversion factor).

XOD library: wayland/total-dissolved-solids

Matt Wayland has incorporated features into a library: wayland/total-
dissolved-solids. The library includes a number of features such as
temperature compensation if you have suitable measurement or
estimation, measurement and averaging of values to reduce noise.

Additional information

DFrobot wiki: https://wiki.dfrobot.com/Gravity__Analog_
TDS_Sensor___Meter_For_Arduino_SKU__SEN0244

Best Engineering Projects: https://bestengineeringprojects.
com/tds-sensor-and-arduino-interfacing/

145

An example test patch:

Simple calculation of the TDS value, based on the DFrobot Arduino IDE library:

This Arduino code snippet calculates the TDS (Total Dissolved Solids) value based on the average ADC
(Analog-to-Digital Converter) value obtained from a TDS sensor.

Calculate the voltage_value:
• Average a set of ADC values to reduce noise. (ADC = analog-digital converter)
• Multiply the average ADC value (avgval_ADC) by the reference voltage (5.0V).
• Divide the result by the maximum ADC value for a 10-bit ADC (1024) and then divide by 6. The

division by 6 is specific to the sensor's sensitivity or conversion factor.
Calculate the TDS value:
• Use the voltage_value in a polynomial equation to convert it to a TDS value (in ppm, or parts per

million).
• The equation is: TDS = (133.42 * voltage_value^3 - 255.86 * voltage_value^2 + 857.39 * voltage_

value) * 0.5
• The coefficients (133.42, -255.86, and 857.39) are derived from the TDS sensor's calibration data.

The code calculates the TDS value in water based on the sensor's voltage readings, converting the
voltage to TDS using a polynomial equation. (The same parameters are used in the Seeed Studio library
for a similar sensor).

146

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Water level sensor
Description

A water level sensor is a device that measures
the level or depth of water in a container or
natural body of water.

Resistive water level sensors use the change in
electrical resistance that occurs when a
conductive material (usually a strip or probe)
comes into contact with water. The sensor has
two conductive strips or probes at different
heights or positions, and when water touches
these probes, it creates an electrical
connection between them.

There are several parallel copper tracks on the
pcb. Those are alternately connected to VCC
and GND. While the sensor is dry there is no
electrical connection between them but as the
water level is rising they get connected. We can
treat them as a variable resistor.

The water level sensor / leak detection sensor is a 3-pin module that
outputs an analogue signal (generally 0 to 500) that indicates the
approximate depth of water submersion. When used in conjunction with
a pull up resistor, it can be used as a digital device to indicate the
presence or water.

This sensor has a series of ten exposed copper traces, five of which are
power traces and five are sense traces. These traces are interlaced so
that there is one sense trace between every two power traces. Usually
these traces are not connected but are bridged by water when
submerged. The change in resistance corresponds to the distance from
the top of the sensor to the surface of the water. The resistance is
inversely proportional to the height of the water:

• The more water the sensor is immersed in, results in better
conductivity and will result in a lower resistance.

• The less water the sensor is immersed in, results in poor
conductivity and will result in a higher resistance.

The higher the water level rises, the lower drops the resistance.
The resistance can be measured using a voltage divider as shown in the
picture above. It's a really simple circuit with R1 being a fixed resistor and
R2 being our variable resistor. Since the current through all resistors in a
row is the same, the voltage drop at every resistor is dependent on it's
resistance - or it's proportion of the total resistance of the circuit. So as
the water level increases, the voltage measured at 'Analog In' increases
until the whole sensor is covered in water. With the total height of the
sensor as well as the max and min values at 'Analog In', we can calculate
the water level. Resistive sensors are simple, low-cost, and easy to use
but may be affected by the conductivity of the water.

(Thank you to https://lastminuteengineers.com for some of the
information on this page)

147

Specifications

Operating Voltage: +5V
Working Current : <20mA
Sensor Type : Analog or Digital
Water Detection Area :. 1.58in X .63in (40mm X 16mm)
Mounting Hole Size : 0.12in (3mm)
Operating Humidity: 10% to 90% (non-condensing)
Working Temperature: (-30 to 50 degrees C)

How to Connect

The 3 pins to connect to the Grove board on the module are:
S (Signal) pin is an analog output that will be connected to one of the
analog inputs on your Arduino.
+ (VCC) pin supplies power for the sensor. It is recommended that the
sensor be powered with 3.3V – 5V. Please note that the analog output
will vary depending on what voltage is provided for the sensor.
– (GND) is a ground connection.

First you need to supply power to the sensor. For
that you can connect the + (VCC) pin on the
module to 5V on the Arduino and – (GND) pin to
ground. However, one issue with these sensors is
their short lifespan when exposed to a moist
environment. Having power applied to the probe
constantly speeds the rate of corrosion
significantly. To overcome this, we recommend
that you do not power the sensor constantly, but
power it only when you take the readings. An easy
way to accomplish this is to connect the VCC pin
to a digital pin of an Arduino and set it to HIGH or
LOW as per your requirement. Connect the S
(Signal) pin to a suitable unused analogue pin on
the Arduino board.

148

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using a water level sensor
XOD library

Use analog-sensor node from xod/common-hardware library.
Values can be read repeatably from the analogue port at a suitable
interval and used for calibration, display or further calculations. If a
digital port is being used to power the sensor (to allow intermittent
powering of the device, and minimise electrolytic corrosion) - the
relevant port can be turned on, and a delay of >10 mSec added before
reading the sensor and turning off the digital port again.

Calibration

To get accurate readings out of your water level sensor, it is
recommended that you first calibrate it for the particular type of water
that you plan to monitor. Pure water is not conductive, minerals and
impurities in water make it conductive. So, your sensor may be more or
less sensitive depending on the type of water you use.
Before you start storing data or triggering events, you should see what
readings you are actually getting from your sensor. Note what values
your sensor outputs when the sensor is completely dry -vs- when it is
partially submerged in the water -vs- when it is completely submerged.
In the example below, you see the following values in the serial monitor
when the sensor is dry (0) and when it is partially submerged in the water
(~420) and when it is completely submerged (~520). With a series of
measurements, it is possible to draw a calibration curve that allows
prediction of the precise physical depth of the water.

Further information:

Water sensor hookup: https://www.hackster.io/NewMC/water-level-
monitor-b42be9
How it works and interfacing with Arduino: https://lastminuteengineers.
com/water-level-sensor-arduino-tutorial/
Water level sensor tutorial: https://www.thegeekpub.com/236571/
arduino-water-level-sensor-tutorial/

149

Test patch

Set port to D2 (or whichever port you are using) and UPD to
‘Continuously’. Connect SIG to a watch node. Upload and debug.

150

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Capacitive soil moisture sensor
Description

A capacitive soil moisture sensor measures the moisture content in the
soil based on changes in capacitance. The sensor typically consists of a
probe with conductive plates, which form a capacitor. The probe is
inserted into the soil, and the soil acts as the dielectric material between
the conductive plates.

The capacitance of a capacitor depends on the surface area of the
conductive plates, the distance between the plates, and the dielectric
constant of the material between the plates. A capacitive moisture
sensor works by measuring the changes in capacitance caused by the
changes in the dielectric. It does not measure moisture directly (pure
water does not conduct electricity well), instead it measures the ions
that are dissolved in the moisture These ions and their concentration
can be affected by a number of factors, for example adding fertilizer for
instance will decrease the resistance of the soil. Capacitive measuring
basically measures the dielectric that is formed by the soil, and the water
is the most important factor that affects the dielectric. The dielectric
constant of the soil changes with its moisture content. When the soil is
dry, its dielectric constant is low, and when the soil is wet, its dielectric
constant increases.

The sensor measures the capacitance between the conductive plates,
which in turn reflects the dielectric constant of the soil. By calibrating the
sensor to the specific soil type and knowing the relationship between the
dielectric constant and soil moisture content, the moisture level in the
soil can be determined.

Capacitive soil moisture sensors offer several advantages over resistive
sensors, such as:
1. Non-contact measurement: The capacitive sensor doesn't rely on

direct electrical contact with the soil, reducing the risk of corrosion
and improving the sensor's lifespan.

2. Less sensitive to soil salinity: Capacitive sensors are less affected
by the soil's conductivity, making themmore reliable in various soil
types.

3. Lower power consumption: Capacitive sensors typically consume
less power, making them suitable for battery-powered or energy-
harvesting applications.

Traditional soil moisture sensors are prone to corrosion with a limited
lifespan regardless of measures taken. This capacitive soil moisture
sensor features no exposed metal . The result is a more robust sensor
without corrosion worries. However, capacitive soil moisture sensors
may require calibration for different soil types, and their accuracy can be
affected by factors such as temperature and probe positioning.

Electronics

Hardware schematic for capacitive soil moisture sensor
Soil and sensor form a capacitor where the capacitance varies according
to the water content present in the soil. The capacitance is converted
into voltage level basically from 1.2V to 3.0V maximum.
There is a fixed frequency oscillator that is built with a 555 Timer IC. The
square wave generated is then fed to the sensor like a capacitor. To a
square wave signal that capacitor, however, has a certain reactance, or
for argument’s sake a resistance that forms a voltage divider with a pure
ohm type resistor (the 10k one on pin 3). The greater is the soil moisture,

151

the higher the capacitance of the sensor. Consequently, there is a smaller reactance to the square wave, thus lowering the voltage on the
signal line. The voltage on the Analog signal pin can be measured by an analog pin on the Arduino which represents the humidity in the soil.

Specifications

Using the capacitive sensor with an Arduino is simple as the Arduino has a built in 10 bit ADC. The sensor has a built-in voltage regulator that
supports 3.3V, meaning it can work with a 3.3V development board as well as 5V. It is recommended that 3.3V power be used if available, to
maximise resolution of the ADC.
• Sensor type: Analog
• Operating voltage: 3.3 VDC
• Output voltage: 0-3.0 VDC
• Interface: PH2.54 3-pin

How to Connect

To connect to the Grove board:
• Connect top plug wire (GND) to (GND)
• Connect second plug wire (VCC) to 3.3V
• Connect bottom plug wire (AOUT) to an analogue port on the Arduino board (e.g. A1)

152

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Using a capacitive soil moisture sensor
XOD library

Use analog-sensor node from xod/common-hardware library.

Calibration

There are some excellent tutorials with guides to the theory, use and
calibration of this capacitive soil moisture sensor, for example:
• https://makersportal.com/blog/2020/5/26/capacitive-soil-

moisture-calibration-with-arduino
• https://www.instructables.com/Soil-Moisture-Sensor-Calibration/
• https://create.arduino.cc/projecthub/wteele/auto-calibration-

program-for-capacitive-soil-moisture-sensor-066070

One technique is to use a gravimetric technique to calibrate capacitive-
type electromagnetic soil moisture sensors. Capacitive soil moisture
sensors exploit the dielectric contrast between water and soil, where dry
soils have a relative permittivity between 2-6 and water has a value of
roughly 80. Accurate measurement of soil water content is essential for
applications in agronomy and botany - where the under- and over-
watering of soil can result in ineffective or wasted resources. With water
occupying up to 60% of certain soils by volume, depending on the
specific porosity of the soil, calibration must be carried out in every
environment to ensure accurate prediction of water content. An Arduino
can be used to read the analog signal from the capacitive sensor, which
can be calibrated to volumetric soil moisture content via gravimetric
methods (using volume and weight of dry and wet soil). Alternatively
there are autocalibration approaches .

The capacitance of the sensor is measured by means of a 555 based
circuit that produces a voltage proportional to the capacitor inserted in
the soil. One can then measure this voltage by use of an Analog to
Digital Converter (ADC), which produces a number that we can then
interpret as soil moisture. The final output value is affected by probe
insertion depth and how tight the soil packed around it is. Value_1 is the
value for dry soil and Value_2 is the value for saturated soil.
For example: Value_1 = 520; Value_2 = 260.

The range will be divided into three sections: dry, wet, water. Their related
values are:
• Dry: (520 430]
• Wet: (430 350]
• Water: (350 260]
•
Assuming linearity, you can convert these values to a “percent” of water.
Just remember, in reality, Dry is not 0%moisture and “Water” may not be
100%moisture, at least at the lower values. Still, it is a useful
measurement. (modified from: https://www.switchdoc.com/2020/06/
tutorial-capacitive-moisture-sensor-grove/)

Further information:

Sensor use and calibration: https://how2electronics.com/interface-
capacitive-soil-moisture-sensor-arduino/
Theory and calibration: https://makersportal.com/blog/2020/5/26/
capacitive-soil-moisture-calibration-with-arduino

153

Weather/environmental sealing of the capacitive soil mooisture sensor: https://
thecavepearlproject.org/2020/10/27/hacking-a-capacitive-soil-moisture-sensor-for-
frequency-output/. The article also describes hacking the device for frequency output.
Comparison of soil sensors and some tips: https://arduinodiy.wordpress.com/2020/08/

Method for permanent waterproof encapsulation of electronics

154

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

155

Using Arduino IDE
XOD, and other ‘no-code’ programming options, are a really useful way to get started working with
microcontrollers. They require less up-front learning and offer an alternative and intuitive way of
thinking about programming. However, you may also be interested in learning to code - either as an
extension to your XOD programming skills, or as an alternative. Arduino provides it own free software
for programming: the Arduino IDE, which is available for download at www.arduino.cc/en/software.
This software uses the C++ language for programming. Grove provides an excellent guide for
programming your board using the Arduino IDE at www.files.seeedstudio.com/wiki/Grove-Beginner-
Kit-For-Arduino/res/Grove-Beginner-Kit-For-ArduinoPDF.pdf.

One advantage of using the Arduino IDE is the vast amount of resources available for working with
almost any piece of hardware. Whilst the XOD community is growing fast and new libraries are being
added all the time, you may find that certain hardware and components do not yet have compatible
XOD nodes. In this case, there is almost always an Arduino IDE library that can be used. Another
option is to convert existing Arduino IDE libraries into XOD libraries. Matt Wayland has written an
excellent guide detailing how to convert Arduino libraries for use in XOD, available at www.biomaker.
org/s/converting-arduino-to-xod_wayland.pdf. Further guidance on creating libraries of XOD in C++ is
available on the XOD website at www.xod.io/docs/guide/nodes-for-xod-in-cpp and www.xod.io/
docs/guide/analog-sensor-node.

You can also use XOD in combination with Arduino IDE. For example, you could write a programme in
XOD, then navigate to ‘Deploy > Show Code for Arduino’ in the menu bar to export this programme in
code. You could then add additional code in Arduino. For example, code to control a device not
supported in XOD.

Software Expansion

Finding XOD Nodes
Once you have found a component that you would like to use you will need to find a XOD node to
represent that hardware. The xod/common-hardware library provides nodes for a number of
commonly used components and many more nodes have been created by the XOD community.

As a standard electronic components are assigned a ‘reference designator’. This short combination of
letters and numbers identifies specific components, for example, the Grove board uses the ‘BMP280’
barometer and the ‘SSD1306’ OLED screen. This system is useful as it is easy to compare
components, understand what hardware others are using, and search for complimentary nodes
and/or code for programming the hardware.

In XOD, many contributors have created specific libraries to deal with certain pieces of hardware, and
you can search these libraries on the XOD website at www.xod.io/libs. It is usually easiest to search
using the hardware’s reference designator. Another useful way to find libraries is to search the XOD
forum at www.forum.xod.io. This can help you to find relevant node and libraries, as well as identify
any common issues others have had when using specific pieces of hardware.

156

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Converting Arduino
Libraries to XOD

Whilst the XOD community is growing fast and new libraries are
being added all the time, you may find that certain hardware and
components do not yet have compatible XOD nodes. In this
case, there is almost always an Arduino IDE library that can be
used. Arduino libraries exist for a huge range of breakout
boards and other devices (see www.arduinolibraries.info). If you
have a little C++ experience, it is easy to incorporate these
libraries into XOD.

If you cannot find a XOD library for a device, you will need to
look for a class-based Arduino library. Manufacturers of
breakout boards typically provide C++ libraries for their devices.
On the product pages of companies such as Adafruit you will
typically find links to code repositories. For more unusual
devices a web search will often find libraries developed by
hobbyists.

In this tutorial we will create a XOD library for the TSL2591 high
dynamic range digital light sensor. Adafruit produce breakout
boards for this sensor, available as either a solderable version
or with a STEMMA-QT socket (Qwiic-compatible, not Grove-
compatible). You can learn more about these breakout boards
at learn.adafruit.com/adafruit-tsl2591.

Adafruit’s code repository for their TSL2591 library is available
on github at www.github.com/adafruit/Adafruit_TSL2591_
Library. You should download this library before starting this
tutorial.

Please note that this tutorial assumes a basic knowledge of the
XOD IDE and C++. For our Beginner’s Guide to XOD see www.
www.biomaker.org/nocode-programming-for-biology-
handbook. For an excellent beginner’s short course in C++ see
www.codecademy.com/learn/learn-c-plus-plus.

Why Convert Arduino Libraries?

Image Credits: Adafruit Industries LLC

The Adafruit Industries TSL2591 Lux Sensor Breakout Boards.
Left to right: solderable and STEMMA-QT versions.

157

Creating a XOD library for the
TSL2591 Lux sensor

Requirements
• Computer running MacOS, Windows or Linux with XOD software and USB driver installed (required)
• Adafruit TSL2591 library (required - download from www.github.com/adafruit/Adafruit_TSL2591_Library)
• Arduino IDE (for testing - download from www.arduino.cc/en/Main/Software)
• Arduino board and USB connector cable (for testing)
• Adafruit TSL2591 Lux Sensor and connectors (for testing)

When presented with a new device the first thing you should
do is check if it is already supported in XOD. There is a
searchable database of XOD libraries at www.xod.io/libs.

If you search for “light sensor” or “TSL2591” you will find that
a library already exists for this device (www.xod.io/libs/
wayland/tsl2591-light-sensor). However, for the purposes of
this tutorial, we will pretend that there is no library for the
TSL2591, and will instead convert the Adafruit C++ library for
use in XOD.

It is a good idea to test libraries you find using the Arduino
IDE. Well written libraries will include example sketches.
Reading through the sketches can help you to understand
how the methods in the library are used.

In this tutorial we will first test the Adafruit TSL2591 library in
the Arduino IDE, then ‘wrap’ this library for use in XOD. First
we will create a device node to represent the TSL2591
sensor, then we will create action nodes to represent each of
the library’s member functions.

Connecting the TSL2591 Sensor to your Arduino
CONNECTING THE SOLDERABLE SENSOR TO A GROVE BOARD:
• Solder a six pin header set to the breakout board
• Plug a 4-pin Grove-to-female connector into an I2C socket on the Grove board
• Fit the male header pins on the breakout board into the female connector ends.
• Make sure the wire colours match the pin labels as follows: black to GND, red to Vin, white to SDA, yellow to SCL.

CONNECTING THE SOLDERABLE SENSOR TO A DIFFERENT ARDUINO BOARD:
• Solder a six pin header set to the breakout board
• Use male-to-female wires to connect the header pins on the breakout board to the header sockets on the board
• Make sure the wires are connected as follows: GND to GND, Vin to VIN, SDA to SDA and SCL to SCL.

CONNECTING THE STEMMA-QT SENSOR:
• Use a SparkFun Qwiic Arduino board and connect with Qwiic cables.
• Or connect a SparkFun Qwiic shield to any other Arduino board and connect with Qwiic cables.

158

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Testing the Arduino library

INSTALL ARDUINO
IDE

1

Download the Arduino
IDE from the Arduino
website and install it
on your computer.

2

ADD LIBRARY TO IDE

From the ‘Tools’ menu select ‘Manage Libraries’. In the
Library Manager search for ‘tsl2591’. Select the most
recent version of the Adafruit TSL2591 Library and click
‘Install’. If you receive a prompt informing you that the
library is dependent on other libraries, click ‘Install all’.

UPLOAD

4

Click on the Upload
button. This is the
button on the top left
of the screen that
looks like an arrow.

RUN AN EXAMPLE SKETCH

3

Running an example sketch is a good way of checking
that the device is wired correctly to the Arduino board,
that the device is working, and that the library is
working.
Open an example sketch by navigating to ‘File’ >
‘Examples’ > ‘Adafruit TSL2591 Library’ > ‘tsl2591’.

159

OPEN THE SERIAL
MONITOR

5

Once the program is
running, open the
serial monitor by
navigating to
‘Tools’ > ‘Serial
Monitor’.

TEST THE SKETCH

6

Make sure the speed
is set to 9600 baud. If
everything is working
data will be printed to
the serial monitor.

GO TO LIBRARY
GITHUB PAGE

7

In an internet browser,
navigate to www.
github.com/adafruit/
Adafruit_TSL2591_Lib
rary.

EXPLORE THE CODE

In the .h file find the public interface to the class. This
provides the class constructor and various member
functions. In XOD we will create a node for the device
and then an action node for each of the member
functions we want to use. Continue to browse the .cpp
and .h files to get a better idea of how the library works.

OPEN THE .H FILE

8

On Github you can
browser the .cpp and
.h files which contain
the code behind the
library. Click on the .h
file to open it.

9

160

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Creating a TSL2591-device node

CREATE A NEW
PROJECT IN XOD

Open the XOD
software and start a
new project by
navigating to ‘File’ >
‘New Project…’.

10

RENAME YOUR
PATCH

11

Right-click on the
main patch in the
Project Browser and
select ‘Rename’.
Name the patch
‘tsl2591-device’.

NOT-IMPLEMENTED-
IN-XOD NODE

12

Double click on the
patch and type ‘not-
implemented-in-xod’.
When the node appears,
click to add it to the
patch.

ADD AN OUTPUT-SELF NODE

13

Add an output-self node (xod/patch-nodes) in the same
way. Use the ‘Label’ box of the Inspector Pane to name
it ‘DEV’. When you do this, you should notice two new
patches will automatically appear in the Project
Browser: input-tsl2591-device and output-tsl2591-
device.

OPEN C++ CODE
EDITOR

Double-click on the
not-implemented-in-
xod node to open the
C++ code editor. You
will see some template
code in the editor.

14

161

QUICK HELP

15

If you look at the Quick
Help pane there is a
C++ Cheatsheet listing
terminal nodes in the
patch. Here there is a
single output node.

ADD CODE

16

Delete the template code and add the prepared C++
code (see below).

// Tell XOD where it can download the libraries:
#pragma XOD require "https://github.com/adafruit/Adafruit_Sensor"
#pragma XOD require "https://github.com/adafruit/Adafruit_TSL2591_Library"

//Include C++ libraries
#include <Adafruit_Sensor.h>
#include <Adafruit_TSL2591.h>

node {

meta {
// Define our custom type as a pointer on the class instance.
using Type = Adafruit_TSL2591*;

}
// Create an object of class Adafruit_TSL2591
Adafruit_TSL2591 sensor = Adafruit_TSL2591();
void evaluate(Context ctx) {
// It should be evaluated only once on the first (setup) transaction
if (!isSettingUp())
return;

// Try to initialize sensor
if (!sensor.begin()) {
raiseError(ctx);
return;

}
emitValue<output_DEV>(ctx, &sensor);

}
}

C++ CODE FOR XOD TSL2591 DEVICE

162

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

UNDERSTAND EACH SECTION OF THE C++ CODE

A

B
C
D
E

F

Declare dependencies on the Arduino libraries so that XOD can
automatically download and install them.

Include the header files of the Arduino libraries.

Declare a custom type which describes the hardware module.

Create an instance of the custom type.

The evaluate function is called whenever the node requires updating. The
isSettingUp function returns true on the first transaction. It is used here to
ensure that the initialisation code runs once only. The begin function of the
Adafruit_TSL2591 class is called to initialise the sensor; if initialisation fails
an error is raised.

Finally an instance of type tsl2591-device is emitted via the patch terminal
node DEV. N.B. The custom type takes its name from the patch.

17

A

B

C

D

E

F

The TSL2591-device C++ code

163

RETURN TO THE XOD
PATCH

18

You can return to the
XOD patch at ant time
by clicking the back
arrow in the top left of
the patch.

ACTION NODES

20

Now that we have a node to represent our device, we also need action nodes to initiate
actions or sequences from the Arduino library. In the header file, you can see that the
Adafruit_TSL2591 class has several member functions for configuring and reading data
from the sensor. We can make these functions available to XOD by wrapping them inside
nodes. As an example we’ll use the function to set the integration time (the length of time
the sensing element is collecting charge) of the device.

DESCRIBE YOUR NODE

19

Click on an empty space in the XOD patch, then use the
description box in the Inspector pane to write a short
description of your new node. You can also add
descriptions for each node within your patch by clicking
on them. This documentation is important as it will help
others to understand and use your libraries.

Documenting your device node
& introduction to action nodes

164

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

THE INTEGRATION
TIME FUNCTION

21

This function is called
setTiming and takes
one argument:
tsl2591IntegrationTim
e_t, which is an
enumerated type.

ADD NODES

24

Add the following nodes to your set-timing patch:
input-tsl2591-device (your patch), input-byte, input-
pulse, output-pulse, not-implemented-in-xod (xod/
patch-nodes). We will give them names, labels, and
explain their purposes in the following steps.

NAME THE PATCH

Following the
convention of starting
the names of action
nodes with a verb.
We’ll name this one
‘set-timing’.

Creating a Set-Timing node

23

MAKE A NEW PATCH

22

Add a new patch to
XOD. Click the ‘Add
patch’ button in the
Project Browser or
select ‘File > New
Patch...’ in the menu.

INPUT-TSL2591-
DEVICE

25

Name this node ‘DEV’
with description ‘A
tsl2591-device’. This
is a tsl2591-device
created using our
tsl2591-device node.

165

INPUT-PULSE

27

Name this node ‘UPD’
with description
‘Update’. Pulses
received by UPD will
trigger the action of
the node.

OUTPUT-PULSE

28

Name this ‘DONE’ with
description ‘Pulse on
completion’. This node
will output a pulse
when the integration
time has been set.

INPUT-BYTE

26

Name this node ‘TIME’ with description ‘Integration
time (milliseconds). Options: 100ms = 00h, 200ms =
01h, 300ms = 02h, 400ms = 03h, 500ms = 04h, 600ms =
05h’. There’s no enum data type in XOD, so we’ll use a
byte to specify TIME and list the available integration
times and their byte values in the description.

NOT-IMPLEMENTED-
IN-XOD

29

We will use this node
to add C++ code
linking the XOD patch
to the Arduino library.

DEFAULT VALUES

30

We can set default
values for inputs. E.g.
set default integration
time to 300ms using
02h in the OUT field of
the TIME input.

166

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

The Set-Timing C++ code

REPLACE THE TEMPLATE WITH CODE

31

Double-click on the not-implemented-in-xod node to open the C++ editor. Replace the
template with the code below. Read the comments for an explanation of each line.

node {
void evaluate(Context ctx) {
// The node responds only if there is an input pulse
if (!isInputDirty<input_UPD>(ctx))
return;

// Get a pointer to the `Adafruit_TSL2591` class
instance

auto sensor = getValue<input_DEV>(ctx);
sensor -> setTiming(getValue<input_TIME>(ctx));
emitValue<output_DONE>(ctx, 1);

}
}

C++ CODE FOR XOD SET-TIMING NODE

REPEAT FOR EACH
FUNCTION

32

Repeat the process for
each of the functions
in the Arduino library.
Use the wayland/
tsl2591-light-sensor
library as a reference.

167

Creating a Quick-Start node

CREATE A QUICK-START NODE

Let’s simplify use of our library by creating a single node with all the functionality a
typical user requires. For the TSL2591 sensor, we will assemble a lux meter.

33

A
B
C
D
E

The read-lux action node is triggered by a pulse to UPD and outputs total
luminosity (FULL), infrared luminosity (IR) and lux (LUX).

The inputs GAIN and TIME are used to set sensor gain and integration time
respectively.

The set-gain and set-timing action nodes are triggered on the initial boot
and also whenever the input values change.

The pulse-on-change nodes (xod/core) emit a pulse when the values of their
inputs change.

The get-gain and get-timing action nodes report the current sensor gain and
integration time respectively.

A

B

C

LUX-METER NODE

The finished lux-meter
node will look like this.

D

E

34

168

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Creating example patches and testing

MAKE AN EXAMPLE PATCH AND TEST YOUR PATCH

The lux-meter is our quick-start node which encompasses our device node,
as well as several action nodes, to take readings from the sensor.

A clock node is used to initiate a reading from the sensor every second.

Tweak nodes allow the user to adjust the gain and integration time at
runtime.

Watch nodes display the values output from the lux-meter.

35

Example patches demonstrate how to use your library and are also invaluable for testing.
This example patch shows how our newly-created lux-meter node can be used.

Once finished you should use your example patch to test your nodes. Use ‘Upload and
Debug’ to upload the patch to your Arduino, installing dependencies if you need to. Once
running you should see output to all watch nodes. Check whether the values being
reported by watch nodes are sensible, and try adjusting the gain and integration time.

A

B
C

D

A

B C

D

169

Publishing your library

OPEN PROJECT
PREFERENCES

36

The first step to
publish your library is
to set the metadata.
Go to ‘Edit’ > ‘Project
Preferences…’ in the
menu bar.

SET METADATA:
NAME

37

Use this window to set
your library’s
metadata. Under
‘Name’ add a short,
but descriptive name
(max 20 characters).

SET METADATA:
LICENCE

38

Under ‘Licence’ choose
an open source
software license (see
www.opensource.org/
licenses).

SET METADATA:
DESCRIPTION

41

Briefly describe the
purpose of the library.
You can include a link
to the Arduino library
and the datasheet for
the device.

SET METADATA:
XOD CLOUD API KEY

40

Used only for the
feeds service provide
by XOD Cloud. You
can use the ‘Generate’
button to create an
API key.

SET METADATA:
VERSION

39

Under ‘Version’ set the
version number using
Semver notation, i.e.
major.minor.patch.

170

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Publishing your library

UPDATE PROJECT
PREFERENCES

42

Click the ‘Update
Project Preferences’
button to save your
changes.

PUBLISH LIBRARY

43

When ready to publish,
go to ‘File’ > ‘Publish
Library…’. A window
will summarise the
metadata. Click
‘Publish’ to finalise.

XOD LIBRARY
DATABASE

44

Your library will now
appear in the XOD
database (www.xod.
io/libs), available for
other users to
download.

UPDATES

45

To update your library:
• Open the project.
• Make changes.
• Update metadata.
• Publish again.

Summary
The process of wrapping class-based Arduino libraries can be
summarised as follows:

1. Find Arduino library for device
2. Test Arduino library
3. Familiarise yourself with the class defined by the library
4. Start a new XOD project
5. Create a new device
6. Wrap class member functions in action nodes
7. Create a quick-start node
8. Create one or more example patches
9. Test library
10. Share library with XOD community

171

Useful Resources

XOD Resources
XOD DOCUMENTATION
XOD has good quality documentation for a range of projects available at www.xod.io/docs.
The following guides are particularly relevant for this tutorial:
• Wrapping class-based Arduino libraries: www.xod.io/docs/guide/wrapping-arduino-

libraries
• C++ API: www.xod.io/docs/reference/node-cpp-api
• Error handling: www.xod.io/docs/guide/errors
• Dealing with state: www.xod.io/docs/guide/cpp-state
• Dealing with time: www.xod.io/docs/guide/cpp-time

XOD FORUM
XOD has a friendly and helpful community. Don’t be afraid to ask for help on the forum at
www.forum.xod.io

XOD LIBRARIES
You can learn a lot from looking at existing libraries at www.xod.io/libs. However, you should
be aware that many use an older style of C++ syntax. See www.xod.io/docs/guide/migrating-
to-v035 for more details.

Arduino Libraries
The following are good locations to search for relevant class-based Arduino libraries:
• Arduino: www.arduinolibraries.info
• Adafruit: www.adafruit.com
• Pololu: www.pololu.com
• Sparkfun: www.sparkfun.com

Case Studies

eCO-SENSE: Soil Sensors Powered by Plant Photosynthesis
This project aims to prototype a low-cost soil sensor powered by biophotovoltaics. The device uses an Arduino Uno,
temperature sensor, moisture sensor and gas sensor to take measurements of soil conditions, and adds a bluetooth module
to send the data wirelessly to a phone or computer. Working together with Dr Paolo Bombelli from the University of
Cambridge, the team aims to use biophotovoltaic cells to power their device, allowing it to be used in-situ and in low-
resource environments.

The project used a DHT22 temperature and humidity sensor (similar to the DHT11 sensor on the Grove board), an FC-28
moisture sensor, an SGP30 gas sensor and an nRF8001 bluetooth breakout board. Grove compatible alternatives include the
Grove DHT11 or DHT22 sensors (use node xod/dev/dht2x-hygrometer and socket D2), the Grove Soil Moisture sensor (use
node xod/common-hardware/analog-sensor and sockets A0/A2/A6 - beware of clashes), the Grove VOC and eCO2 sensor
(convert SparkFun or Adafruit Arduino libraries and use I2C socket, address 58h) and the Grove Blueseeed module (use UART
socket). Wireless communication is not yet fully supported in XOD, but for a useful tutorial exploring how to send sensor data
to your Android phone via bluetooth using Arduino IDE see www.instructables.com/How-to-Receive-Arduino-Sensor-Data-
on-Your-Android.

You can read more about the eCO-SENSE project on their Hackster page:
www.hackster.io/glen-chua/eco-sense-soil-sensors-powered-by-plant-photosynthesis-be80a2

Image Credits: eCO-SENSE Biomaker Team

172

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

173

Image Credit: Behavioural Chamber Biomaker Team

Behavioural Chamber to Evaluate Rodent Forelimb Grasping
This project uses a light emitter and light sensor to monitor when a rodent moves past a certain threshold, and triggers
release of a sugar pellet when it does.

The project uses a red laser pointer and GL5528 light sensor to create a trip sensor that notifies the programme when a
rodent has crossed a boundary. This then instructs a ULN2003 motor driver to initiate the custom built pellet dispenser. A
count of how many times a rodent has completed this task is shown on an LCD screen. Grove compatible alternatives
include the Grove Light Sensor (included on the board, use node xod/common-hardware/analog-sensor and sockets A0/
A2/A6 - beware of clashes), the Grove I2C Motor Driver (use node gweimer/h-bridge/h-bridge-2dir and I2C socket, variable
address) and the Grove 16 x 2 LCD (use node xod-dev/text-lcd/text-lcd-i2c-16x2 and I2C socket, address 3Eh).

You can read more about the behavioural chamber project on their Hackster page:
www.hackster.io/alejandrocarn/a-behavioural-chamber-to-evaluate-rodent-forelimb-grasping-bedb1a

Case Studies

Camera for Monitoring Plant Pollination Events
This project developed a video and time-lapse monitor to record pollinators interacting with plants. The set up
included an environmental sensor to measure temperature, humidity and barometric pressure and wrote this data
into the image file names on a microSD card for later analysis.

The project used a Raspberry Pi (see p84), a 160° variable focus camera, a BME280 temperature pressure and
humidity sensor and a 128x64 OLED screen. Grove compatible alternatives include the Grove BME280 Barometer
sensor (use node emiliosancheza/bme280-sensor/sensor-bme280 and I2C socket, address 76h), the Grove OLED
Display 0.96 inch (included on the board, use library wayland/ssd1306-oled-i2c and I2C socket, address 3Ch) and
the Grove Serial Camera Kit with a Grove SD Card Shield. Camera modules are not yet supported in XOD, but
information of how to use the Grove Serial Camera is available at www.wiki.seeedstudio.com/Grove-Serial_
Camera_Kit. Note that for a high resolution auto-focusing camera, like the one used in this project, Raspberry Pi is
a better option than Arduino, as these tasks require high processing power.

You can read more about the plant pollination monitor project on their Hackster page:
www.hackster.io/team-ppi/variable-time-camera-for-monitoring-plant-pollination-events-ad21e7

Image Credit: Plant Pollination Monitor Biomaker Team

174

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

175

Open Source Microbial Bioreactor
This project aims to develop an open source bioreactor to optimise yield of enzymes producing recombinant
proteins for molecular biology. The bioreactor measures optical density of the culture and monitors and regulates
the pH, temperature and aeration.

The project uses an LED and photodiode to measure optical density, a pH probe and peristaltic pump to maintain
pH and an LCD screen to display the reactor conditions. The team also aims to add a temperature sensor and
heating pad to maintain temperature, and an oxygen sensor and agitation device to maintain aeration. Grove
compatible alternatives include the Grove Red LED (included on the board, use node xod/common-hardware/led
and socket D4), the Grove Light sensor (included on the board, use node xod/common-hardware/analog-sensor
and sockets A0/A2/A6 - beware of clashes), the Grove pH sensor (use node xod/common-hardware/analog-
sensor and sockets A0/A2/A6 - beware of clashes), the Grove I2C Motor Driver to drive a peristaltic pump (use
node gweimer/h-bridge/h-bridge-2dir and I2C socket, variable address) and the Grove 16 x 2 LCD (use node xod-
dev/text-lcd/text-lcd-i2c-16x2 and I2C socket, address 3Eh).

You can read more about the microbial bioreactor project on their Hackster page:
www.hackster.io/open-bioeconomy-lab/microbial-bioreactor-d7f61b

Image Credit: Microbial Bioreactor Biomaker Team

176

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Example: the AirFlow reactor
Prototyping of a low cost device for constant
temperature incubation of micro reactions,
including LAMP molecular diagnostics.

Jim Haseloff, University of Cambridge

This project describes the design and construction of a low-cost
microreactor for temperature control of biological reactions.
Such instruments underpin modern molecular diagnostics and
synthetic biology approaches that are important for health,
agriculture, education and research. However, these instruments
are often expensive ($1000's), and these prices are a barrier to
wider adoption and equitable access to advanced biological
technologies that can otherwise be implemented cheaply.
Early attempts to exploit polymerase chain reaction in the 1990's
resulted in a number of designs for thermal cycling systems -
this resulted in commercialisation of a number of efficient but
expensive designs for the research and medical diagnostics
communities. As time has passed, we have seen ever-lowering
cost of DNA synthesis, and advent of new molecular tools, which
are democratising access to engineering of biological systems.
There is now an opportunity to bring these together with the low-
cost electronics, optics and manufacturing techniques that have
been developed by open source technologists and DIY
communities.

Background
The programme was initiated after the COVID19 lockdown, and
was an attempt to explore different approaches to the design of
microreactors. The common theme is that heated air flow is
used for temperature control. This avoids the need for a
machined metal block and complementary heated lid - common
but relatively expensive items. A number of early successful
designs for PCR machines (e.g. Corbett Rotorgene, Roche
Lightcycler) used directed flow of hot and cool air, but the

approach has fallen away, as Peltier device heated/cooled block-
based designs have proliferated. It may be time to re-visit this,
armed with new advances in electronic control and 3D printing
technologies...and with modest intermediate goals, such as low-
cost incubators for isothermal diagnostics, like LAMP assays
(used for viral diagnosis).

Specifications
Earlier prototyping experiments have led to the design of a
programmable thermal reactor that allows microtube reactions
to be incubated in a constant temperature air flow. The objective
was to build a device that included:

• Space for at least one 8-microtube strip that takes up a
volume of approximately 80x30x10mm - with allowance for
possible future integration of optical sensors or cheap
plastic fibre optics.

• An off-the-shelf PTC resistive element as heat source.
• Unidirectional fan-forced air flow through the device, using

177

a low-cost computer blower fan.
• Minimal volume of air for recirculation, to improve response
to heating (or cooling).

• An accurate thermal control system using low-cost Arduino
electronics and sensors.

• Touchscreen microcontroller interface that allowed easy
use of the programmable device.

• Attempt to minimise costs of construction and use
components that are globally accessible.

• The use of 3D printing, no-code programming, commodity
electronics and open source documentation to allow free
sharing and modifications of the design.

The project aimed to explore different components, designs and
practical assembly of low-cost microtube incubators - which
would make accessible a new generation of isothermal reactions
- for home testing, field applications and international
educational efforts.

Instrument design
The core of the instrument is a rack for an 8-microtube strip
inside a modular 3D printed set of blocks that create a physical
loop for air flow - with temperature control by a computer
controlled heater and forced air flow by a blower fan. The device
consists of sections that slot together with half-lap joints
defined in the 3D print files. Exterior walls are 8mm thick, with

3.75 mm flanges at the overlap between section, allowing 0.5
mm gap between half-lap joint pieces, which are 5mm deep.

This allows sufficient clearance to avoid problems with fitting of
curved pieces, and allows the sections to be simply stacked on
top of each other to create a fairly stable and air tight joint. This
is very useful during prototyping, but might be replaced by
something more permanent in a finalised design.

The sections consist of (i) a base plate with an extended front
deck for the electronics, (ii) a mid-vessel sections sits above this
and contains the heater and fan, and support for the microtube
rack. (iii) A custom lid sits above this, and contains streamlined
venting to direct forced air flow between the fan and heater
compartments. (iv) A front console sits on the front part of the
base section, This provides a support for the integrated
touchscreen and a housing for the instrument electronics.

The AirFlow parts can be printed in a variety of different
materials, but care must be taken if the reactor is to be used at
temperatures over 70ºC, where commonly used materials such
as PLA will start to soften and deform, and may even melt. I have
settled on Extruder GreenTEC Pro filament, which is relatively
resistant to heat up to 160ºC (VICAT softening temperature: at
which a specimen is penetrated to a depth of 1 mm by a flat-
ended needle with a 1 mm² circular or square cross-section -
but I try not to stray above 100ºC). GreenTEC Pro is also derived
from renewable raw materials and is biodegradable. The material
is very easy to print with and produced a matt finish which is
easy to work with tools or smooth with abrasive pads after
printing.

The components are relatively large and can take over a day to
print. Print failures were minimised by the use of a print bed
adhesive. I have found that Dimafix is an excellent adhesive for
use with GreenTEC Pro filament on the heated glass bed found
on the Ultimaker S3. The build is released after printing by
cooling or refrigerating the plate. Printing is generally trouble-
free. Also, GreenTEC Pro Carbon is available for stronger carbon-
fibre-infused assemblies, using a CC Red 0.6 print core with the
Ultimaker S3.

178

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

AirFlow reactor prototype

The 3D print designs are available as STL files. The 3D designs
include insets and mounting points for the various fixtures - for
heater, fan, sensor board, touchscreen, etc. The assemblies were
designed using Autodesk Fusion 360, and Fusion 360 files are
also available.

Heater and fan
The two major active components in the device are (i) ARX
CeraDyna FW1275-A1041C 12V centrifugal Fan 75 x 75 x 15mm,
rated at 16.58m³/h, and (ii) a 50W, 12V PTC heater element that
is generally used as a component for heating car windscreens.
This simple device consists of a heat resistant plastic housing
and PTC heating elements attached to metal radiator fins. The
heaters and fans cost around £5-£10 each retail in the UK, and
about half that when delivered when from suppliers in China.

The fan is positioned on the side of an internal wall of the vessel
to extract air from that side and to push this into the top
chamber. A vent is moulded into the top surface of the vessel
section, and the exit port of the fan slots into this. Note: some
fans are manufactured with overheat sensors that cause the fan
to slow at elevated temperatures - generally >70ºC. The most
expensive fans are not always the best. Check what maximum
temperature the fan is rated for: different fans bearings can
affect this. Running the fan over temperature may shorten its
lifespan, but the devices are fairly robust. I have run them in PCR
setups at 95ºC-100ºC without major problems.

In addition, a custom inset has been programmed into the 3D
print - positioned as a retainer for for the fan so that it can be
clipped into place, along with the slot for the exit port.

The fan can be permanently fixed in place by application of blobs
of UV cured glue (liquid plastic), which sets after a few seconds
of illumination. This quick-setting fixing agent is generally useful
as a way of immobilising printed parts, components and stray
leads.

179

The PTC heater assembly is mounted from the lower side of the
vessel mid-section. It slots into a complementary notch
engineered into the base. The 3D printed insets for both the fan
and heater are customised for the type of component, so may
need to be customised for different models.

The PTC heater is fixed in the slot with two self-tapping screw.
This fixes the component firmly underneath the manifold.

The mounted fan and heater are fixed in the vessel, with leads
ready for connection to the electronics in the base section.

Manifold and tube rack
The manifold is incorporated by printing streamlined channels
that sit under the microtube rack. The channels provide a funnel
for air flow from the top section of the reactor, past the reaction
tubes and into the heater.

8-microtube strips fit into the manifold with space around the
the sample tubes for airflow.

An accurate digital sensor (MCP9808) is mounted in the top
surface of the vessel, under the lid and exposed to the flow of air
running towards the sample tubes and manifold. The sensor is
mounted on a small circuit board at the top of the reactor, and
needs to be connected to the control electronics in the base of
the device. A channel is laid down in the 3D printed vessel and
provides a conduit for a cable connecting the sensor and control
electronics.

180

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

AirFlow reactor prototype
The sensor is an I2C device and is connected using a 4 wire
ribbon cable. A double-headed connector wire can be used. On
end of the cable can be connected to the control electronics. The
other end is cut off. The cut end of the flat cable is fed into the
internal channel in the 3D printed vessel part.

The cable should be pushed through until it emerges from the
other end of the printed channel.

The flat cable wires should then be separated, a few millimetres
of insulation stripped off, and the wires tinned with a small
amount of solder.

The leads are soldered to the MCP9808, taking note of the 4
connections to the VCC (5V), GND (ground), SCL (clock) and SDA
(data) terminals. After soldering, any protruding leads should be
snipped off.

The top surface of the vessel is printed with an inset, so that the
board can be pushed downwards to sit flush with the surface.
Ensure that the solder joints are solid. It can then be permanently
glued in place.

The sensor sits adjacent to the sample tubes and provides an
accurate measurement of air temperature. Technical details
about the MCP9808 sensor and its use with the XOD no-code
programming environment can be found here.

Control electronics
The basic hardware: heater, fan and temperature sensor need to
be hooked up to an electronic control system. Based on earlier
experiments (see hackster.io/jim-haseloff), I decided to use an
Arduino-compatible Mega 2650 PRO mini microcontroller board
with a 4D Systems Gen4 touchscreen for interactive display and
controls. These allow the use of simple and fast no-code
programming tools (XOD and 4D Workshop) to configure the
control routines and display. Further the Mega 2650 PRO board
is both compact and relatively powerful. Unlike Arduino UNO
compatible boards (with single hardware serial port), it provides
multiple hardware serial ports, which allows easy use of dual
ports for programming and screen communication. Hardware
serial port connection speeds are much faster than software-
defined serial port communication.

181

In addition to the microcontroller board and display, the control
electronics include a step-down voltage controller to provide a

regulated 5V supply from 12V, and two MOSFET (metal-oxide
semiconductor field-effect transistor) solid-state relays for
microcontroller regulated, independent switching of power for
the fan and heater. The compact size of the components allows
the electronics to fit within the tray underneath the 3D printed
console at the front of the instrument. In addition, a small piece
of stripboard is used to distribute signals from the MCP9808
sensor. A diagram of the full circuit layout can be downloaded
(below) either as an image or Fritzing file.

First, assemble the 4D Systems Gen4 uLCD 32DT screen to the
back of the 3D printed console. I have variously printed the
console section with GreenTEC Pro. If you're expecting rough
handling, you can use GreenTEC Pro Carbon filament for a
considerably stronger print for this relatively thin-walled console
section. The 3D print design includes a cutout and inset to
mount the screen neatly, and well as mounting holes for
stainless steel M3x10mm bolts. The ribbon cable connector and
µSD card can be added for programming the screen. More info
at: https://www.hackster.io/jim-haseloff/biomaker-tutorial-4-
programming-the-4ds-touchscreen-3b2006.

The device has 12V DC heater which is rated at 50 Watts. This is
by far the major draw on the power supply, which must be rated
to accommodate this. The external 12V DC supply should be
rated for at least 6 Amps (72 Watts). Suitable power supplies

(also used for laptops, CCTV systems, etc.) are readily available
for around £10-15 retail price. These power supplies will
generally have a 2.1 mm diameter coaxial plug connector, with
centre positive polarity (check specifications before purchase).
The external power supply will plug into the AirFlow device via a
chassis-mounted 5.5 x 2.1 mm DC power socket rated for 10
Amps.

Appropriate gauge wiring should be use for the lines handling the
12V DC supply for the heater. I used 20AWG wire for the main
12V DC lines. Short leads were soldered to the chassis-mounted
power supply socket. Bare joints were covered in heat-shrink
tubing. Red and black wires were used for positive and negative
polarities, respectively. The 12V supply is fed into two branches,
one containing a MOSFET switch for the heater circuit, the other
containing a MOSFET switch for the fan and a 12V-5V converter
circuit board. The two branches were supplied using a T-Tap 2-
way quick splice wire connector, where the appropriate 20AWG
wire leads were connected by simply clamping in the connector
with pliers.

The 12V power supply wires should be connected to: (i) the input
screw terminals for the LR7843 MOSFET, which is used to switch
power to the PTC heater, and (ii) the input screw terminals for the
D4184 MOSFET which switches power to the fan. The terminals
are also used as a junction to feed 12V DC to a mini DC-DC Buck
stepdown converter (OE-SD28V) to provide a 5V regulated
output.

182

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

AirFlow reactor prototype

The circuit board has positive polarity pads for input (IN+) and
output (VO+) voltages and a common ground pad (GND). The
enable (EN) pad can be used as a switch for the output. The
reverse side of the circuit board contains a trace (circled) that
can be cut to set the voltage conversion to a set value (rather
than adjustable via the onboard potentiometer) and can be set to
3.3V, 5.0V, 9.0V, 12V by bridging solder pads. The circuit requires
a 5V supply, so the trace should be carefully cut and the 5V
setting chosen. It is a good idea to check the output voltage
before wiring it into a circuit. The OE-SD28V circuit board is
small component that can be wired up, then enclosed in heat-
shrink wrap to make an in-line device.

Wait before wiring the leads to the screw terminals, to allow
easier assembly of the rest of the circuit.

The remaining circuit can be soldered together, to link the
microcontroller board, sensor, touchscreen display and MOSFET
switches via a small stripboard.
1. cut and trim a small piece of stripboard to suit (see pattern
of traces above)
2. Solder a 4 pin plug socket that will accept the signals from
the MCP9808 I2C temperature sensor.
3. Connect the 5V, GND, SDA and SCL terminals on the Mega

2560 PRO Mini microcontroller (MCU) to the stripboard.
4. Connect MCU terminals D20 and D21 to the MCP9808 SDA
and SCL on the stripboard. Connect the MCP9808 5V and GND
lines on the stripboard.
5. Connect MCU terminals D10 and D11 to the two MOSFET
modules. Run the GND signals to the GND rail on the
stripboard.
6. Connect the D3, D18, D19, 5V and GND signals to the
connector for the LCD touchscreen. Leads with a 5 position in-
line socket can be soldered to the terminals to allow reusable
connection to the 4D Systems touchscreen connector board.
7. The boards should be laid out in the intended positions.
Hookup wire can be cut to size, ends stripped and soldered in
place. Solid-core wire can be used to create a more rigid
framework to keep the boards connected.

After wiring the MCU board and peripheral components, the MCU
can be programmed from XOD through its USB port, and the 4D
Systems display programmed from 4D Systems Workshop4 via
the serial pins on the connector board. (see below for details)
The fan, heater and sensor leads pass though the mid-section
vessel via ports in the 3D printed casing - and are lead out to the
front space under the casing. It is necessary to block any

183

openings between the reactor vessel and the console space that
houses the electronics. I have found that Blu-tack acts as an
excellent putty-like stopper that is easily removed and can be
reused multiple times during prototyping and debugging.

The power supply routing should be attached to the relevant
MOSFET screw terminals.
1. Connect the fan and heater leads to the relevant MOSFET
screw terminals.
2. Connect the MCP9808 sensor cable to the socket installed
on the stripboard.
3. Connect the display to the MCU via the 4D Systems
connector board.

The MCU control system and touchscreen user interface were
laid out using two no-code graphical programming systems.

First, the user interface was composed in 4D Systems
Workshop4. This software package is provided free by the
manufacturer of the touchscreen. Individual screens are
composed by adding widgets in a WYSIWYG editor, and
adjusting their properties by setting parameters. Screen widgets
can either display status, or be used to set particular values via a
range of interactive controllers. Prototype code is then loaded
onto the target screen, which results in a defined set of software
modules that a microcontroller can communicate with, through a
serial port.
Second, XOD has good support for 4D Systems screens, and
allows the rapid prototyping of control systems.

Interface design
The objective was to produce a simple-to-use graphical
interface for setting isothermal incubations. The prototype
interface consisted of four screens with (i) a top-level status
screen that included calls to three subsidiary screens that
allowed (ii) setting of the target temperature, (iii) time of
incubation, and (iv) screen plot of the vessel temperature over
time, displaying +/- 10ºC around the set point.

The top screen has widgets to display: current vessel
temperature (ºC), current run time (min), temperature set point
(ºC), set time (min), fan activity (on/off), heater activity (on/off),
and buttons to start/stop the run, and to navigate to the three
other control screens.

The time of a run can be set from this screen, with a 9-position
switch that is touch activated. A series of set times is provided,
ranging from 5 min to unlimited. The actual times can be easily
modified in software, or interactive controls added. (Most LAMP
diagnostic reactions run for 60 min).

184

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

AirFlow reactor prototype

The set point for heating of the vessel can be set from this
screen (above). A 9-position switch allows choice of commonly
used incubation temperatures up to 95ºC. Additional buttons are
used for fine adjustments of the target temperature. (Note: it is
necessary to use a heat-resistant thermoplastic filament such
as GreenTEC Pro if temperatures above 70-100ºC are used).

The temperatures during a run are plotted on screen on a moving
display. The current temperature is shown on the right-most side
of the plot, as well as a numerical value at the top of the screen.
The Y-axis shows temperatures within +/- 10ºC of the current
setpoint. The X-axis represents the elapsed time, with 20 sec
between divisions. The total elapsed time is shown as numerical
value at the top of the screen. The yellow plot displays the
activation of the heater in the control circuit, with 2-step values,
high corresponding to on, low to off. In this run, the heat was
continuously on, until the setpoint was approached - this was
followed by a small amount of hysteresis and oscillation (<1ºC)
with gradual settling. The degree of overshoot is dependent on
the settings of the control software (using a XOD-encoded PID

routine).
All of the subsidiary screens have a 'back' button that triggers
return to the top display.

The Workshop4 code that is required to program the 4D Systems
touchscreen is available. Individual widgets are addressable
from XOD and communication between the two no-code
systems is required to build an effective instrument.

Control system in XOD
The second major software component of the instrument design
is the control of peripheral hardware from the Arduino-
compatible Mega 2560 PRO Mini board. The control software
was composed in XOD, and tested with open frame hardware
chassis, before integration into prototype instruments. As
described in this guide, XOD employs a visual dataflow model for
composing Arduino-compatible code, with interactive debugging
tools and ability to rapidly deploy control routines in simple and
low-cost embedded systems...and accessible for users with no
conventional programming skills. XOD programs are called
patches, and they consist of a series of nodes that can represent
physical devices or computational functions. Each node has pins
that represent ports for input or output of data values or timing
pulses. Input pins are located on the top of a node, and output
ports are positioned at the bottom of the nodes. Programs are
assembled by 'wiring' the node ports to create flows of data and
timing though the program. The XOD program that is used to

185

control the workings of the AirFlow device is shown above. At
first glance this XOD patch looks complicated, but it can be
broken down:

First, the connection to the 4D Systems touchscreen is defined -
here connected to a hardware-based fast serial port (115200
baud uart-1). A fast clock for program operations is also defined
(clock with 100 msec intervals). The arrows represent values
that can be shared in a bus-like way with other nodes. For
example, the fast clock node shares 100 msec pulses with other
nodes though the tick bus.

A second clock node is defined, which send pulses at 1 sec
intervals. A count node is used to generate a running total of the

186

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

AirFlow reactor prototype
number of seconds elapsed. This value is sent to a divide node,
divided by 60, and the floor node used to define the quotient
(number of minutes elapsed), and themodulo node used to
calculate the remainder (seconds between successive minutes
elapsed). The min (minutes) and sec (seconds) values are
shared with other nodes. (The watch nodes are used to show
values in real-time during debugging with the hardware attached
to the machine running the XOD development environment).

The touchscreen contains a widget that is used to set the time of
a reaction. It is configured as a 9-position rotary switch which
can be controlled by touch. The setting of this on-screen device
is sent from the 4D Systems touchscreen to the microcontroller
via the serial port that connects them. The read-rotary-switch
node reads an index value from the switch (values from 0 to 8,
depending on the chosen position). The nth-input node decode
this information and assigns a value corresponding to that
displayed on the touchscreen controller, and shares this with
other nodes as the time setting for the reaction time.

Similarly, a read-rotary-switch node is used to capture the index
position for the rotary switch on the touchscreen. This is used to
define the base setpoint for vessel heating, and is shared with
other nodes as the value: Tbase.

The base set temperature can be modified by two on-screen
buttons that can be used to jog the set temperature up or down
by 1ºC. Two read-winbutton nodes monitor these momentary
activated buttons. The boolean output of each button is fed to a
pulse-on-true node which converts each button press to a pulse.
Two separate count nodes are used keep a tally of the number of
upward and downward button presses. These are then added to
the base temperature setting, which is incremented or
decremented accordingly - and the final temperature setpoint is
shared as value: target.

187

The current vessel temperature is read from the MCP9808
sensor. An external library (wayland/mcp9808-thermometer)
provides special nodes for work with this hardware. The sensor
is a sophisticated pre-calibrated device that is accurate to +/-
0.25ºC between -40 and 125 ºC. More information about the
MCP9808 sensor and associated XOD nodes can be found in this
book. The nodemcp9808-device initialises the I2C device and
read-temperature extracts the current temperature value,
calibrated in ºC. Reads are updated at 100msec intervals
through use of a wake node, which is triggered by tick pulses.

XOD provides a node that incorporates code for a proportional–
integral–derivative (PID) controller. The PID controller takes
actual temperature and setpoint values, and calculates the best
way to control an on-off heating circuit to rapidly reach and
stabilise the temperature at the target temperature, based on
three parameters, Kp, Ki and Kd. Here, a pid node is used to
calculate whether to heat (+ve value) or not (-ve value). A greater
node is used to check whether the output is above zero, and
produce a boolean value. This is combined with the on/off
switch signal through an and node - to activate the heater only
when (i) a run has been activated, and (ii) called by the pid node.
The heater is activated by switching a digital-write node (Heater
I/O) connected to port (D10) that controls the MOSFET,
controlling power to the heater element. In this device, control of
the fan is simple, it is always working when the device is
powered on. If the fan was to be controlled during the run, it
would be advisable to program a cooling period after the end of a
run to avoid any possibility of local overheating. One could also
program additional visible or audible alerts at the end of reaction
times, or for errors.

The device writes a number of values and parameters to different
display widgets programmed into the touchscreen display. There
are relatively large number of widgets on the different screens,
and a corresponding large number of output nodes that send the
relevant information to the appropriate screen element. A
number of example are shown below, where values are sent to
different, indexed digit displays via write-i-led-digits nodes. The
values are updated every 100 msec due to triggering by tick
pulses. Values are updated internal to the touchscreen controller,
independent of whether they are currently displayed. A larger
number of widgets and/or rate of updating can tax the rates of
transmission through the serial port, causing errors or lockup, so
fast serial hardware communication (or slower rate of updates)
is needed.

The "plot" screen on the touchscreen provides a historical view
of vessel temperatures during a run. This is done by setting up a
scope widget in Workshop4 when programming the touchscreen.
The scope widget provides an oscilloscope-like display, where
the size, X and Y scales and number/colour of traces can be
preset in Workshop4. In XOD, instances of the write-node can be
used to plot new data, and control the rate of updating. For
example, in this case, the vessel temperature is plotted as a
differential between the target and actual vessel temperatures. A
subtract node is used to calculate the temperature difference.
This value needs to be converted to a pixel value that is
compatible with the on-screen scope widget (multiply by 10 and
clip between -100 and 100, and add to offset by 100 pixels). At
the same time, a signal corresponding to the state of heating is
added to the plot. An if-else node is used to convert the boolean
heater signal to numerical values (30 if true, 10 if false). The

188

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

AirFlow reactor prototype
numerical values can be plotted as 2-state values on the scope
widget (which can handle up to 4 traces). This allows the user to
visualise the frequency and timing of heater activation, which
can be useful for tuning the PID algorithm, and as a general
indicator during normal use.

The 'code' for Workshop4 and XOD are both easy to modify and
can be used to create customised interfaces.

Performance
The built microreactors have been through a number of design
iterations (hackster.io/jim-haseloff), including early prototyping
experiments detailed at the bottom of this page. The devices
have proved relatively easy to construct, and due to the use of
precalibrated sensors, simple to implement.

The vessels are generally run at around 65ºC for LAMP reactions
used for diagnostics. The reactors reach the working
temperature within 2 minutes, and maintain the set temperature
to within <1ºC tolerance for the duration of the run. The hottest
external surfaces of the AirFlow reactor (adjacent to the PTC
heater) reach 45ºC after prolonged running at 65ºC, otherwise
simply warm to the touch.

The AirFlow reactor has been tested successfully by running
LAMP diagnostics experiments, conducted by Dr. Fernando
Guzman Chavez in our lab in Cambridge. The reactions mixtures
were assembled using New England BioLabs (NEB) WarmStart®
Colorimetric LAMP 2X Master Mix, a kind gift from NEB.

189

Future developments
• Continue refining the design of the vessel to reduce cost of
materials and increase speed of printing. Investigate designs
suitable for injection moulding.
• Explore different display options to reduce cost.
• Test different venting options to allow thermal cycling.
• Introduce optics in the manifold to allow integration of
quantitative imaging and analysis.
• Add wireless communications and web-based data
collection.

Costs
The current approximate retails cost of the components is
around £100. The major costs are due to the touchscreen and 3D
print materials. (COVID supply issues have elevated the cost of
the TFT-LCD touchscreen). Cost reduction might centre on
choice of cheaper display, and reducing the size and mass of the
3D printed vessel.

Hardware components
• 50W, 12V PTC heater element
• ARX CeraDyna FW1275-A1041C centrifugal Fan 75 x 75 x
15mm, 16.58m³/h
• Adafruit MCP9808 I2C Temperature Sensor Breakout Board
•Mega 2560 PRO Mini Embedded MCU board
• 4D Systems gen4-uLCD-32DT
•D4183 MOSFET Trigger Switch Drive Module 400W
• LR7843 MOSFET switch module
• ElectroCookie Solderable Breadboard
• 5.5 x 2.1 MM 10A DC Power Jack Socket
• 4 Pin Cable with XH2.54mm pitch plug JST XH
• T-Tap 2-way quick splice wire connector
•Mini DC-DC 3A Buck Step-down Converter 12v to 5V
• Extrudr GreenTEC Pro 3D printing filament
• Extrudr GreenTEC Pro Carbon

Software apps and online services
• Fusion 360
• Autodesk Fusion 360
• XOD
•Workshop4 IDE
• 4D Systems Workshop4 IDE

Hand tools and fabrication machines
• Ultimaker S3 3D printer
• Dimafix pen, 100g
• UV curing liquid plastic glue
• Blu-tack

Jim Haseloff
University of Cambridge
https://www.hackster.io/jim-haseloff

For more Biomaker projects, see:
https://www.hackster.io/biomaker

Additional Information

Image Credits: SparkFun Electronics CC

Arduino boards, left to right: Arduino Uno, Arduino Pro Mini, Lilypad Arduino,
Arduino Mega 2560

Image Credits: SparkFun Electronics CC

Raspberry Pi boards, left to right: Raspberry Pi 4 Model B, Raspberry Pi 3 A+,
Raspberry Pi Zero W

Alternative Development Boards

The Grove board is a great place to start with building your own devices, as it
is simple to use, low-cost, easily accessible, and comes with a range of useful
inbuilt components. However, there are a wide variety of other boards
available for getting started with projects like this.

The two most commonly used types of development boards are Arduino and
Raspberry Pi, and each of these companies provide a range of boards for
different uses. Whilst Arduino boards are microcontrollers that can perform
one programme at a time, Raspberry Pi boards are fully-operational
computers that can perform multiple tasks at once. A Raspberry Pi may be
better for more complex projects, but Arduino boards are easier to use and
suited for most simple projects. Note that XOD does not yet support
programming of Raspberry Pi boards.

You can find a comparison of Arduino models on the SparkFun website (www.
learn.sparkfun.com/tutorials/arduino-comparison-guide) and a comparison of
Raspberry Pi models on the PiHut website (www.thepihut.com/blogs/
raspberry-pi-roundup/raspberry-pi-comparison-table).

190

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

191

Useful Links

BIOMAKER

NO-CODE
PROGRAMMING

HACKSTER

XOD

ARDUINO

ARDUINO CREATE

www.biomaker.org
Collection of technical information, pointers to tutorials and software resources,
information about the Biomaker Challenge
www.biomaker.org/nocode-programming-for-biology-handbook
Information on the No-Code Programming for Biology programme, handbook downloads,
tutorials and videos.
www.hackster.io/biomaker
Biomaker community hub used for open documentation of Biomaker projects and tutorials.
www.xod.io
Download XOD software, libraries, documentation and forum advice.
www.arduino.cc
Official repository of Arduino information.
www.create.arduino.cc
Integrated resource for code and project-sharing.
www.seeedstudio.com
Hardware supplier for the Biomaker Starter Kit and Grove components.
www.open-smart.aliexpress.com/
Source of hardware for Biomaker expansion kit.
www.sparkfun.com
Good source of practical information about microcontrollers and devices.
www.adafruit.com
Good source of practical information about microcontrollers and devices.
www.instructables.com/classes/
Classes in many maker skills, including electronics and 3D printing.
www.fritzing.org
Open source circuit layout and illustration.
www.processing.org
Software sketchbook for dynamic graphics and visual arts.
www.engbio.cam.ac.uk
Information, news and events from the Engineering Biology Interdisciplinary Research
Centre at the University of Cambridge
www.openplant.org
Information, news and events from the BBSRC-EPSRC Synthetic Biology Research Centre

SEEED STUDIO

OPEN SMART

SPARKFUN

ADAFRUIT

INSTRUCTABLES

FRITZING

PROCESSING

ENGINEERING
BIOLOGY IRC

OPENPLANT

Glossary

ACCELEROMETER Accelerometers measure the acceleration of an object, i.e. any change in
velocity (speed and direction). A 3-axis accelerometer, like the one included
in the Grove board, can sense when the board is moved or tilted in any
direction (X, Y and Z axes).

ACTUATOR Actuators are output devices that convert electronic signals into
mechanical movement. For example motors, belts or pumps.

ADAFRUIT Adafruit Industries is an open-source hardware company the provides
electronic components, tools, accessories and learning resources. Their
components are compatible with Arduino and Raspberry Pi hardware.

ANALOG Analog signals, unlike digital signals, are continuous and and can take an
infinite number of values. Analog devices measure continuous variables,
such as sound or light intensity. Many environmental sensors are analog
devices. Computers use digital, rather than analog signals, so analog
signals must first be converted to digital signals by the microcontroller.

ARDUINO Arduino is an open-source electronics company. They make openly
available programming software and low-cost hardware to allow anyone to
get started making their own interactive electronics projects.

ARDUINO IDE The Arduino Integrated Development Environment (IDE) is Arduino’s free
software for programming Arduino boards using the C++ programming
language. It is an alternative to the XOD IDE, and can be used alongside
XOD (see p79).

ARDUINO UNO The Arduino UNO was the first USB-based Arduino board, consisting of
a microcontroller chip, printed circuit board (PCB) and a series of digital
and analog input-output pins to connect shields and external hardware.
The Arduino UNO R3 is the third revision of this board, and is what the
Seeduino and Grove board are based upon.

ATMEGA328P The Atmega328P is the microcontroller chip used in the latest versions of
the Arduino board, including the Grove board.

BAROMETER A barometer device measures air pressure, and can therefore be used to
monitor or forecast weather, or to measure altitude.

BIOMAKER Biomaker is an initiative founded at the University of Cambridge that focuses on
training and providing funding and resources for researchers interested in the
intersection of biology, engineering and computing. Biomaker activities include the
annual Biomaker Challenges and No-Code Programming for Biology training.

BREADBOARD Breadboards are simple devices for developing and prototyping electrical
circuits, without the need for soldering. They consist of rows of sockets
that are connected via electrical wiring. Components can be plugged
directly into these sockets using wires or metal pins. Any devices plugged
into the same row of sockets will be connected together.

BREAKOUT BOARDS Breakout boards are used to make wiring of electronic components easier.
They usually consist of a small PCB board with a single, or small number
of electronic components attached. For example, an LED or OLED Screen
breakout board. They can be easily attached to a development board via
wires, pins and sockets, or plugs.

192

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

193

BUS (XOD) In computing a bus is a communication system that transfers information between computers, or between different
parts of the same computer. In XOD, we can use buses to transfer information between one part of our patch and another,

without having to connect them via links. This is done using the to-bus and from-bus nodes to send information to, and
receive information from a particular bus.

COMMUNICATION A communication protocol is the method by which two or more electronic components exchange data. Ethernet, wi-fi
and PROTOCOL bluetooth are all examples of communication protocols. Different components use different communication protocols

(e.g. analog, digital, I2C) and so will need to be connected to the Arduino board in different ways.

DEBUGGER (XOD) The Debugger is XOD’s simulator function. It can be used to simulate your patch, or to edit and ‘debug’ your patch after
upload to the board. You can start the debugger using the ‘Simulate’ button, or using the ‘Upload and Debug’ button to
upload the patch at the same time. In debugger mode, you can use tweak and watch nodes to edit and monitor your
patch in real-time.

DEVELOPMENT BOARD A microcontroller development board, like the Grove Arduino board, houses a microcontroller chip on a small PCB board
along side some additional parts and connections making it easy for anyone to programme and connect components to
a microcontroller at home. Development boards are intended to be cheap and easily accessible, and are often used for
developing prototypes and custom instruments.

DEVELOPMENT HOST A development host is the device you will use to write and develop the programme you want to install on the
development board. To programme the Grove board you will use a laptop or PC as the development host.

DIGITAL Digital signals, unlike analog signals, can only take finite and discrete values. For example, an LED can be ‘on’ or ‘off’.
Digital signals can be made to behave in a similar way to analog signals, for example, you can change the brightness of
an LED, but ultimately there are a finite and discrete number of values that the brightness of an LED can take. Computers
use digital signals, and most electronic components are digital. For example, screens, buttons, and some types of
sensor.

GROVE Grove is toolkit of easy-to-use Arduino-compatible electronics. It uses a ‘plug-and-play’ system of modules that can be
easily fitted together to build custom devices. It is developed by the company Seeed Studio.

HACKSTER Hackster is an online platform for recording and sharing electronics projects. It provides a simple way to document and
browse projects, and has a large community of contributors, including companies such as Arduino and Seeed Studio.

HEADER SOCKETS The header sockets (also known as female headers) are connectors that are wired to the PCB board and provide
"female" sockets. They give us a way to easily connect external components to the board, either via male-to-male hook-
up wires, or via an expansion shield.

HOOK-UP WIRES Hook-up wires (also known as jumper wires or jumper cables) are used to connect components to the Arduino board
and come in several different types. Female-to-female hook-up wires have connector sockets at each end that plug into
metal pins on components, on the Arduino board, and on shields. Male-to-male wires, which have metal pins on each
end that fit into female sockets, header sockets or breadboards. Male-to-female wires that have a female socket at one
end and a male pin at the other end. Hook-up wires can also come pre-fitted with plugs to fit into compatible sockets.
For example Grove plugs or Open Smart (JST-XH) plugs.

HYGROMETER Hygrometer devices are used to measure humidity, i.e. the amount of water vapour present in the air or in soil.

I2C Inter-integrated circuits (I2C) are a digital communication protocol used to communicate with multiple devices at once.
With I2C communication several devices can be connected to the same pin of the microcontroller, and each device is
given a “name” digitally (known as an address). Addresses are written as XXh, with XX being a two digit code of
numbers and letters. For example 19h or 3Ch.

INSPECTOR (XOD) In XOD, the Inspector pane is the place where a nodes can be edited. For example, you can change the parameters of a
node’s pins, change the name of a node, or add a description. You must click on a node in the patch for these options to
appear. The Inspector pane appears on the left hand side of the screen below the Project Browser pane, and can be
toggled on and off using the slider bar button in the top left, or by navigating to ‘View > Toggle Inspector’ in the menu
bar.

LED A light-emitting diode (LED) is a bright, low-power light source that generates light by passing a current through a
semiconductor diode.

Glossary

LIBRARY (XOD) In XOD (and in other coding software such as Arduino), libraries are
collections of ready-to-use nodes (or code). They are often designed to
help you use a specific piece of hardware (e.g. wayland/bmp280-
barometer) or as a collection of nodes with similar functions (e.g.
xod/math). The XOD IDE has several libraries pre-installed, but you can add
more libraries using the ‘Add Library’ button (books with a + symbol, in the
Project Browser) or by navigating to ‘File > Add Library...’ in the menu bar.

M5STACK M5Stack is a hardware company which provides it’s own wi-fi and
bluetooth enabled development system, as well as a series of Grove-
compatible components called ‘units’.

MICROCONTROLLER A microcontroller is a small low-power computer embedded into a device.
In contrast to a general purpose computer like a laptop or PC,
microcontrollers are often designed to complete one task and run one
specific programme. The Grove Arduino board contains a reprogrammable
microcontroller so you can upload your own programme on to the board
and create your own devices.

NO-CODE PROGRAMMING Node-code programming is an increasingly popular mechanism allowing
people to programme hardware and software using a graphical user
interface, rather than requiring them to learn and write text-based code.
The Biomaker No-Code Programming for Biology initiative has adopted no-
code and low-code programming as a way to train biologists, and others
with little or no coding experience, to build their own custom devices.

NODE (XOD) In XOD nodes are used as "a visual representation of a physical device or
function". They can represent an electronic component, a mathematical
function or any number of other functions that a computer can
perform. They appear on a patch as a dark grey box outlined in white, with
the name of the node printed in the middle. They may have small coloured
circles (pins) on the top and bottom which represent inputs and outputs.

OLED SCREEN Organic light emitting diode (OLED) screens are an alternative to LCD
screens used mainly for TVs. Instead of having a backlight to illuminate
pixels, each pixel can produce its own light. This can improve contrast.

OPEN SMART OpenSmart is a group of technology companies interested in
the production and development of open-source hardware. They are based
in Shenzhen, China. Open Smart components are used in the Biomaker
Expansion Kit.

PATCH (XOD) In XOD a patch is the working area in which a programme is built. It is
similar to a document or source file in other systems, but instead of text
code the patch is built with nodes.

PCB A printed circuit board (PCB) is composed of a thin fibreglass board with
conductive tracks of copper etched on the surface or between the layers.
They are used to connect electrical components, which are usually
soldered onto the board.

PHOTORESISTOR A photoresistor or light dependent resistor (LDR) is a component that is
sensitive to light. When light falls upon it then the resistance changes, and
this change is used as an electronic signal.

PIEZOELECTRIC BUZZER Piezo buzzers are simple devices that can generate basic beeps and tones.
They work by using a piezo crystal, a special material that changes shape
when voltage is applied to it. If the crystal pushes against a diaphragm, it can
generate a pressure wave which the human ear picks up as sound.

194

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

195

PIN (ARDUINO) In electronics, "pin" is used to refer to the electrical contacts on a component, i.e. the parts of a component that are
used to connect to other components. On the Grove board, the microcontroller chip has a number of pins that are
connected to both the components on the board, and to the Grove sockets and header sockets of the central module,
which allows them to communicate with additional components. In XOD the Arduino pins are referred to as "Ports" to
avoid confusion with XOD pins.

PIN (XOD) In XOD "pin" is used to refer to the inputs and outputs associated with a specific node. They appear as small round
circles on the top (input pins) and bottom (output pins) of a node. Pins are coloured according to their data type.

POTENTIOMETER Potentiometers (often shortened to "pot") are variable resistors that allow you to alter the resistance, and therefore the
current flowing through a circuit, without the need to reprogram the device. They are often found in the form of a knob,
slider or screw.

PROJECT BROWSER The XOD Project Browser is where you will find the current project you are working and libraries you have installed.
Under (XOD) the ‘My Project/[name of your project]’ dropdown you will find all of the patches (or files) in your project. Below that is a

list of libraries. Clicking on the dropdown button of a library will allow you to browse the nodes in that library. Dragging a
node from the Project Browser into the patch will add that node to your patch. At the top of the Project Browser are the
‘New Patch’ and ‘Add Library’ buttons. The Project Browser pane appears on the top left of the screen, and can be
toggled on and off using the hub button in the top left, or by navigating to ‘View > Toggle Project Browser’ in the menu
bar.

QUICK HELP (XOD) The Quick Help pane in XOD is where you can find information about a node and it’s pins. When you click on a node
information about that node and it’s pins will appear in the Quick Help pane. The Quick Help pane appears on the top
right of the screen, and can be toggled on and off using the question mark button in the top right, or by navigating to ‘
View > Toggle Quick Help’ in the menu bar.

SEEED STUDIO Seeed Studio is an open-source hardware company. They developed the Seeduino Lotus development board (based on
the Arduino Uno R3 development board) and the Grove system of components which use plugs to easily connect
modules.

SHIELD Shields are modular circuit boards that piggyback onto your Arduino to instil it with extra functionality. Shields can have
specific functions, such as a wifi shield that will allow your board to transfer information via wifi, or can have more
general functions, like an expansion or prototyping shield. These allow you to easily connect any number of custom
components. Some shields can be stacked on top of one another to create combinations of modules and functions.

SPARKFUN SparkFun is an open-source hardware company that provide a range of development boards and components, as well
as tutorials and learning resources on programming, electronics and working with hardware.

TERMINALS (XOD) XOD terminal nodes (input and output nodes) are used to allow a patch to communicate with ‘the-outside-world’.
Adding terminal nodes to a patch will allow that patch to be used as a node in other patches, with the names and types
of the terminals corresponding to the names and types of the pins on your new node.

USB DRIVER A USB driver is a piece of software that allows your computer’s operating system to communicate with external
hardware, such as a hard drive or a microcontroller development board like the Grove board. The Grove board uses the
CP210 driver from Silicon Labs, and you may need to download this driver in order to use your board.

XOD XOD is an open-source software company that provides the the XOD Integrated Development Environment (IDE). The
XOD IDE is free software that allows you to programme Arduino-based development boards using visual
programming rather than text-based coding. XOD software uses graphical nodes to represent functions, and nodes are
connected together to visualise data flow and programme hardware.

Index

196

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

A
accelerometer 7, 56, 58–59, 80
AirFlow 176, 179, 181, 185, 188
Arduino 3, 6, 8, 20, 72, 94, 155–156, 171, 190
ATmega328P 8
Arduino IDE 155–156, 158
Arduino libraries 41, 156

B
Biomaker iii, 4, 90, 191, 198

initiative iii, 192
www.biomaker.org iii, 4, 19, 87–88, 90,

155–156, 191
www.hackster.io/biomaker 5, 91, 191

biophotovoltaics 172
breadboard 86, 90, 95, 99, 111, 119, 123
buzzer 6, 26, 29, 64, 72

C
C++ 155–156, 160, 166, 171
capacitive soil moisture sensor 150, 152
colour sensor 118, 120
communication 10, 94, 96, 180, 187

analog 10, 94, 97
digital 10, 97
I2C 10, 87, 97, 187

components
1602 liquid crystal display 98
BH1750 114
BMP280 43, 73, 80
DHT11 78
DHT20 79
DS1302 106
HC-SR501 130
HX711 138
LIS3DHTR 80
MCP9808 126, 129, 180
nRF8001 bluetooth 172
potentiometer 26
RCWL-0516 134
SGP30 172
SHT20 110
TCS3472 118
TDS Meter V1.0 142
TSL2591 157
VL6180X 122
WS2812 RGB LED 102

E
encapsulation 153

F
Fritzing 90, 191

https://fritzing.org 90

G
Grove 3, 7, 10, 14, 72, 85–87, 90, 96
connectors 96

H
Hackster 5, 91, 173–174, 189, 191
hygrometer 7, 34, 73, 78

L
laser Range Finder 122
LED 6, 20, 22, 38, 102, 119
light sensor 73, 77, 114, 116, 156

M
microcontroller 2, 6, 8, 10, 180, 182
motion sensor 130, 132, 135

N
No-Code programming iii, 4, 84, 191

O
OLED 6, 50, 52, 54–55, 58, 72, 75
Open Smart 84, 86, 88, 191
OpenPlant iii, 191, 198

P
pin 11, 14
port 11, 15

conflicts 88
publishing libraries 55
PWM 15, 74, 94

Q
Qwiic 156–157

R
radar proximity sensor 134
real time clock (RTC) 106

S
Seeed Studio iii–iv, 6, 85, 96, 145, 191, 193

Grove Beginner Kit 6, 20, 74, 87, 92
software expansion 155
SPI 94

197

T
temperature sensor 79–80, 110, 126, 128,

180
Totem 92, 99

U
UKRI iii
University of Cambridge iii, 191–192, 198
USB driver 18

W
water level sensor 146
water quality sensor 142
waterproof 153
weight sensor 138

X
XOD iv–v, 2–5, 12, 15, 18, 20, 32, 37, 43, 45,

48, 72, 74, 155–156, 171, 184
XOD forum 41

198

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Acknowledgements

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License.

AUTHORS
Jim Haseloff
Stephanie Norwood
Matt Wayland

IMAGES
Jim Haseloff
Stephanie Norwood
Matt Wayland
Seeed Studio
SparkFun Electronics Inc.
Adafruit Industries LLC
Biomaker Challenge Participants

DESIGN & LAYOUT
Stephanie Norwood
Jim Haseloff

HARDWARE
Seeed Technology Co. Ltd.
Arduino S.r.l.
Adafruit Industries, LLC
M5stack-store
OpenSmart Tech.
Spark Fun Electronics Inc.

SOFTWARE
XOD
Arduino
Hackster,

XOD LIBRARY CREATORS
Matt Wayland
Marco Aita
Cesar Sosa
XOD user: gst
XOD user: e
XOD user: gweimer

FUNDING AND SUPPORT
Biotechnology and Biological Sciences Research Council (BBSRC)
Engineering and Physical Sciences Research Council (EPSRC)
Natural Environment Research Council (NERC)
Global Challenges Research Fund UK
OpenPlant Synthetic Biology Research Centre
Department of Plant Sciences, University of Cambridge
Engineering Biology Interdisciplinary Research Centre (EngBio IRC) University of Cambridge
Seeed Studio

CONTACT
Jim Haseloff
jh295@cam.ac.uk

199

200

No-Code Programming for Biology | Rapid Prototyping: Beginner’s Guide

Designed for those with little to no experience working with
coding or hardware, this guide makes use of free open-source
software and low-cost hardware to introduce you skills required
for rapid prototyping of custom scientific instruments.

Learn how to:
• Understand and control an Arduino-based microcontroller
• Programme without using text-based code
• Use simple electronic devices such as screens and sensors
• Build your own devices for use in biological research

www.biomaker.org

